極限環境に対応可能な超弾性エアロゲルを開発(Scientists develop ultra-resilient “frozen smoke” aerogel for extreme environments)

2025-08-01 浙江大学(ZJU)

浙江大学・高超(Gao Chao)教授の高分子科学・工学研究室は、「凍った煙」とも呼ばれる非常に軽量なエアロゲルの新型素材を開発した。これは、ドーム形状の微細孔を持つ高弾性エアロゲルで、グラフェン酸化物ベースの2Dチャネル制限フォーム法により製造される。従来の蜂の巣状やアーチ状の鋭い孔を、ミクロンサイズのドーム状構造に再設計し、2000°C(2273 K)を超える高温でも軽量・弾性・安定性を維持できる特性を実現した。実験では、厚さを紙並みにまで圧縮(99 %の変形)し、数万回にわたって繰り返し圧縮しても元に戻るという高い耐久性を示す。従来のエアロゲルはこうした条件で崩れがちだが、本素材は断裂を防ぐ構造工学を素材内部に取り入れることで、脆さを弾性へと変換することに成功している。2025年7月17日、Science誌に「Dome-celled aerogels with ultra-high-temperature superelasticity over 2273 K」というタイトルで発表された。この革新的素材は、深宇宙探査機、高速航空機、核融合装置などの極限環境下での断熱・保護用途において広範な応用が期待される。

極限環境に対応可能な超弾性エアロゲルを開発(Scientists develop ultra-resilient “frozen smoke” aerogel for extreme environments)
Preparation of aerogels from the 2D channel precursor

<関連情報>

2273 Kを超える超高温超弾性を示すドーム型気泡エアロゲル Dome-celled aerogels with ultrahigh-temperature superelasticity over 2273 K

Kai Pang, Yuxing Xia, Xiaoting Liu, Wenhao Tong, […] , and Chao Gao
Science  Published:17 Jul 2025
DOI:https://doi.org/10.1126/science.adw5777

Editor’s summary

Aerogels, which are typically made using a sol-gel process, consist of a group of materials with high porosity, near transparency, and ultralow density, as they can be up to 99% empty space. Pang et al. developed a two-dimensional channel–confined method to make dome-celled aerogels from a wide range of oxides, carbides, metals, and even high-entropy mixtures. The dome shape imbues the aerogels with mechanical and thermal robustness, allowing them to undergo thousands of compressive cycles up to 99% strain and wide-temperature-change thermal shock. Many of the carbides also have very low thermal conductivity even at high temperatures. —Marc S. Lavine

Abstract

Aerogels are known for their high porosity and very low density and can be made from a range of materials, but are limited by structural instability under extreme thermomechanical conditions. We report on 194 types of dome-celled ultralight aerogels that maintain superior elasticity spanning from 4.2 kelvin (K) to 2273 K, realized by a two-dimensional channel–confined chemistry method. Such aerogels exhibit superelasticity under 99% strain for 20,000 cycles and thermal shock resistance at 2273 K over 100 cycles. The high-entropy carbide aerogel achieves a thermal conductivity of 53.4 mW·m−1·K−1 at 1273 K and 171.1 mW·m−1·K−1 at 2273 K. The combination of temperature-invariant elasticity and chemical diversity makes such aerogels highly promising for extreme thermomechanics, from heat-insulated industries to deep space exploration.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました