量子コンピュータの信頼性を高める新技術(How to build larger, more reliable quantum computers)

2025-08-25 カリフォルニア大学リバーサイド校(UCR)

カリフォルニア大学リバーサイド校(UC Riverside)の研究チームは、複数の小型量子チップを連携させて、より大規模かつ信頼性の高い量子コンピューターを構築する新たなアーキテクチャを提案しました。論文は『Physical Review A』に掲載され、シミュレーションでは、チップ間の一部リンクに欠陥があっても、耐障害性を維持した量子計算が可能であることが示されました。この設計は、量子ハードウェアのスケーラビリティと実用性を大きく前進させる成果です。

<関連情報>

最適化されたノイズ耐性表面コードテレポーテーションインターフェース Optimized noise-resilient surface code teleportation interfaces

Mohamed A. Shalby, Renyu Wang, Denis Sedov, and Leonid P. Pryadko
Physical Review A  Published: 22 August, 2025
DOI: https://doi.org/10.1103/xqrn-wdw1

Abstract

Connecting two surface-code patches may require significantly higher noise at the interface. We show, via circuit-level simulations under a depolarizing noise model with idle errors, that surface codes remain fault tolerant despite substantially elevated interface error rates. Specifically, we compare three strategies—direct noisy links, gate teleportation, and a CAT-state gadget—for both rotated and unrotated surface codes, and demonstrate that careful design can mitigate hook errors in each case so that the full code distance is preserved for both and . Although these methods differ in space and time overhead and performance, each offers a viable route to modular surface-code architectures. Our results, obtained with stim and pymatching, confirm that high-noise interfaces can be integrated fault-tolerantly without compromising the code’s essential properties, indicating that fault-tolerant scaling of error-corrected modular devices is within reach with current technology.

 

誤り訂正された量子ビットとノイズの多いリンクのフォールトトレラント接続 Fault-tolerant connection of error-corrected qubits with noisy links

Joshua Ramette,Josiah Sinclair,Nikolas P. Breuckmann & Vladan Vuletić
npj Quantum Information  Published:10 June 2024
DOI:https://doi.org/10.1038/s41534-024-00855-4

量子コンピュータの信頼性を高める新技術(How to build larger, more reliable quantum computers)

Abstract

One of the most promising routes toward scalable quantum computing is a modular approach. We show that distinct surface code patches can be connected in a fault-tolerant manner even in the presence of substantial noise along their connecting interface. We quantify analytically and numerically the combined effect of errors across the interface and bulk. We show that the system can tolerate 14 times higher noise at the interface compared to the bulk, with only a small effect on the code’s threshold and subthreshold behavior, reaching threshold with ~1% bulk errors and ~10% interface errors. This implies that fault-tolerant scaling of error-corrected modular devices is within reach using existing technology.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました