貝殻に触発された新たなプラスチックリサイクル材料を開発(Seashells Inspire a Better Way to Recycle Plastic)

2025-08-13 ジョージア工科大学

ジョージア工科大学の研究チームは、貝殻の層状構造(硬い鉱物の「レンガ」と柔らかいタンパク質の「モルタル」)に着想を得て、リサイクルプラスチックを強く信頼できる素材に変える新手法を開発した。回収HDPEを「レンガ」、柔軟な接着剤を「モルタル」として積層した複合材は、強度や伸びのばらつきを大幅に低減し、バージンプラスチック並みの性能を維持した。これにより再生材の利用範囲が拡大し、コストも最大50%削減できる可能性が示された。埋立地廃棄の削減や経済効果に加え、信頼性が重視される宇宙分野での資源循環利用にも応用が期待される。今後は他種プラスチックやバイオ由来接着剤を用いた拡張が計画されており、持続可能なリサイクル戦略の基盤となる。

<関連情報>

バイオインスパイアード設計による再生プラスチックの機械的特性変動の抑制 Suppressing mechanical property variability in recycled plastics via bioinspired design

Dimitrios Georgiou, Danqi Sun, Xing Liu, and Christos E. Athanasiou
Proceedings of the National Academy of Sciences  Published:August 12, 2025
DOI:https://doi.org/10.1073/pnas.2502613122

貝殻に触発された新たなプラスチックリサイクル材料を開発(Seashells Inspire a Better Way to Recycle Plastic)

Significance

Recycled plastics are key for circular economies, yet their widespread adoption is limited by unpredictable mechanical performance. This variability discourages their adoption, particularly in demanding applications with tight specifications. Inspired by natural materials like nacre, we present a brick-and-mortar composite design that dramatically suppresses property variability by embedding recycled polymer platelets in a soft matrix. Combined with an uncertainty-aware modeling framework validated experimentally, this approach reduces modulus variability by over 90% while matching the performance of virgin materials. Our design introduces a universally applicable, chemistry-agnostic solution that can enable the design of robust structures from materials exhibiting stochastic mechanical performance, thus allowing for the reliable use of recycled plastics in demanding applications, contributing to the global plastic waste problem.

Abstract

Over 350 million metric tons of plastic waste are generated annually, with most ending up in landfills, dumps, or the environment, posing significant risks. Mechanical recycling remains underutilized, largely due to the high variability in the mechanical properties of recycled plastics (recyclates). This variability undermines performance reliability and hinders the adoption of recyclates in demanding industrial applications. Inspired by natural materials, known for their mechanical robustness despite microstructural stochasticity, we propose a universal, chemistry-agnostic, brick-and-mortar design tailored for recycled polymers. In this design, stiff recycled plastic platelets (bricks) are embedded in a soft virgin polymer matrix (mortar), which accommodates deformation and redistributes stress. To predict the effective modulus, strength, and property variability of such structures, we developed an uncertainty-aware tension-shear-chain model, combining Monte Carlo simulations with literature-based distributions of recyclates’ stiffness and conservative interfacial parameter stochasticity assumptions. We validated our model using nacre-inspired composites fabricated from recycled high-density polyethylene (rHDPE) platelets and polydimethylsiloxane (PDMS) mortar. The experimental results matched model predictions, confirming significant suppression of variability. In a case study on industrial HDPE stretch film, our design reduced modulus variability by up to 93% and maximum permissible strain variability by at least 68% compared to input rHDPE, while matching the modulus of virgin HDPE film. This work introduces a design-enabled variability-suppression strategy for recycled plastics, able to transform highly heterogenous materials into structurally robust products. By supporting virgin-plastic substitution and circular design strategies, our approach can enable the broader adoption of recyclates by several industries.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました