新手法で数千の分子を瞬時に特性評価(New method instantly characterizes thousands of molecules)

2025-08-05 スイス連邦工科大学ローザンヌ校(EPFL)

EPFLの研究チームは、単一光子アバランシェダイオード(SPAD)カメラを用い、数千の分子を同時かつ高速に解析する新手法を開発した。従来数時間かかっていた蛍光寿命測定を1分以内で実現し、高精度かつ大規模な分子特徴付けを可能にした。EPFLのナノスケール生物学研究所(LBEN)、先端量子アーキテクチャ研究所(AQUA)、スピンオフ企業PI Imaging Technologyの共同成果。FRET(フォスター共鳴エネルギー移動)を応用すれば、分子間距離のナノスケール測定や空間トランスクリプトミクスとの統合解析にも活用でき、バイオ分子研究の効率と精度を大幅に高める可能性がある。

<関連情報>

ゲート付き単一光子カメラを用いた単一分子の広視野蛍光寿命イメージング Wide-field fluorescence lifetime imaging of single molecules with a gated single-photon camera

Nathan Ronceray,Salim Bennani,Marianna Fanouria Mitsioni,Nicole Siegel,Maria J. Marcaida,Claudio Bruschini,Edoardo Charbon,Rahul Roy,Matteo Dal Peraro,Guillermo P. Acuna & Aleksandra Radenovic
Light: Science & Applications  Published:04 August 2025
DOI:https://doi.org/10.1038/s41377-025-01901-2

新手法で数千の分子を瞬時に特性評価(New method instantly characterizes thousands of molecules)

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment. Traditionally, FLIM uses time-correlated single-photon counting (TCSPC), which is precise but intrinsically low-throughput due to its dependence on point detectors. Although time-gated cameras have demonstrated the potential for high-throughput FLIM in bright samples with dense labeling, their use in single-molecule microscopy has not been explored extensively. Here, we report fast and accurate single-molecule FLIM with a commercial time-gated single-photon camera. Our optimized acquisition scheme achieves single-molecule lifetime measurements with a precision only about three times less than TCSPC, while imaging with a large number of pixels (512 × 512) allowing for the spatial multiplexing of over 3000 molecules. With this approach, we demonstrate parallelized lifetime measurements of large numbers of labeled pore-forming proteins on supported lipid bilayers, and temporal single-molecule Förster resonance energy transfer measurements at 5-25 Hz. This method holds considerable promise for the advancement of multi-target single-molecule localization microscopy and biopolymer sequencing.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました