分子雲の衝突が星形成を促進するメカニズムを解明(Cloud-Cloud Collisions Reshape Molecular Clouds and Trigger Star Formation)

2025-07-29 中国科学院(CAS)

中国科学院・新疆天文台の博士課程学生ベルディハン氏らの研究チームは、銀河系内の分子雲G013.313+0.193での星形成が、分子雲同士の衝突によって引き起こされた可能性が高いことを観測データから明らかにした。この分子雲では異なる速度を持つ2つの雲(青・赤)が衝突した痕跡が確認され、衝突後に星形成が活発化している。特に、ガスの圧縮領域で「ハブ・フィラメント構造(HFS)」が形成されており、これは大質量星形成に理想的な環境とされる。衝突のタイムスケールと若い星の年齢が一致する点も、衝突が星形成の引き金になったことを強く示唆している。これにより、分子雲衝突が星形成を促進する重要なメカニズムであるという理論を裏付ける新たな証拠が得られた。

分子雲の衝突が星形成を促進するメカニズムを解明(Cloud-Cloud Collisions Reshape Molecular Clouds and Trigger Star Formation)The distribution of the two colliding molecular clouds (with blue and red indicating the blue-shifted and red-shifted clouds, respectively) and the star formation activity. (Image by XAO)

<関連情報>

G013.313+0.193における雲と雲の衝突と星形成 Cloud-cloud collision and star formation in G013.313+0.193

Dilda Berdikhan, Jarken Esimbek, Christian Henkel, Ye Xu, Jianjun Zhou, De-Jian Liu, Ernazar Abdikamalov, Yingxiu Ma, Toktarkhan Komesh, Yuxin He, Wenjun Zhang, Xindi Tang, Gang Wu, Dalei Li, Dongdong Zhou, Kadirya Tursun, Hailiang Shen, Ernar Imanaly, Qaynar Jandaolet, Arailym Manapbayeva and Duriya Tuiakbayeva
Astronomy & Astrophysics  Published:04 July 2025
DOI:https://doi.org/10.1051/0004-6361/202453285

Abstract

We study the G013.313+0.193 (G013.313) region, a complex environment characterised by molecular cloud interactions indicative of cloud-cloud collision (CCC). Observations of the NH3 (1,1) and (2,2) inversion transitions were obtained using the Nanshan 26 m radio telescope, while HCO+ (J = 1–0), 12CO, 13CO, and C18O (J = 1–0) transitions from the 14 m Purple Mountain Observatory Delingha (PMODLH) 14 m telescope. Archival data are also included. We identified key observational signatures of CCC, including complementary spatial distributions, U-shaped structures, bridge features, and V-shaped velocity distributions. The position–velocity (P–V) diagrams reveal clear indications of gas interaction between two velocity components, suggesting an ongoing collision at an estimated angle of ∼ 45° to the line of sight. The estimated collision timescale is 0.35–1.03 Myr, aligned with the inferred ages of young stellar objects (YSOs) in the region, supporting the hypothesis of collision-induced star formation. Hub-filament systems (HFSs) are identified in the compressed gas region, where filaments converge towards a dense hub, suggesting the CCC as a potential driver of HFS and massive star formation. The high column density (∼2 × 1023 cm−2) suggests favourable conditions for the formation of massive stars. Although alternative kinematic drivers such as longitudinal collapse and shear motion are considered, CCC remains the most plausible explanation for the observed features. Our findings contribute to our understanding of the mechanisms of cloud dynamics and massive star formation in turbulent molecular environments.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました