新型カーボン素材が陽子線を鋭利にし、がん治療の精度向上に貢献(New carbon material sharpens proton beams, potentially boosting cancer treatment precision)

2025-08-05 シンガポール国立大学(NUS)

ChatGPT:
シンガポール国立大学の研究チームが、がんのプロトン治療の精度を飛躍的に高める新素材「超クリーン単層アモルファスカーボン(UC‑MAC)」を開発。原子1層の厚さで、従来のグラフェンや市販カーボン膜よりもプロトンの散乱を大幅に抑制。新手法「DTD法」で8インチシートを数秒で合成可能となり、工業利用も視野に。燃料電池、触媒、フレキシブル電子機器など多分野への応用も期待され、2025年7月にNature Nanotechnologyに掲載された。

新型カーボン素材が陽子線を鋭利にし、がん治療の精度向上に貢献(New carbon material sharpens proton beams, potentially boosting cancer treatment precision)
A schematic illustration for disorder-to-disorder synthesis (left) and an atomic-resolution scanning transmission electron microscopy image of UC-MAC (right).

<関連情報>

超純粋な単層非晶質炭素が高精度プロトンビームを生成 Ultraclean monolayer amorphous carbon yields a high-precision proton beam

Huihui Lin,Jian Jiang,Yanxin Dou,Pin Lyu,Xiaocang Han,Yuan Meng,Yuanyuan He,Xin Zhou,Kangshu Li,Guoming Lin,Yu Teng,Jinxing Chen,Yang Meng,Thomas Osipowicz,Xiaoxu Zhao,Xiao Cheng Zeng & Jiong Lu
Nature Nanotechnology  Published:28 July 2025
DOI:https://doi.org/10.1038/s41565-025-01968-3

Abstract

Ångström-scale polygonal rings in monolayer amorphous carbon (MAC) enhance its electronic and mechanical properties while providing unique ångström pores for precise subatomic species separation, essential for advancements in catalysis, energy and medicine. However, the absence of an industrial-scale synthesis method for intrinsic MAC has limited its technological applications compared with graphene and bulk amorphous materials. Herein, we report an industry-compatible disorder-to-disorder synthesis approach to achieve wafer-scale ultraclean MAC (UC-MAC) within a timescale of seconds, featuring optimized ångström polygons without detectable metal contamination, and nanosized pores. In contrast to metal-contaminated MAC, UC-MAC allows atomic-scale characterization of intrinsic electronic properties and functions as an ångström-scale membrane, facilitating the splitting of high-flux H2+ ions into a high-precision proton beam with minimal detrimental fragment-proton scattering events, about half and 40 times less than those from single-crystal graphene and commercial carbon thin films, respectively. The minimum possible membrane material thickness that can yield a highly sharpened proton beam with accurately modulated beam current is desired for proton therapy.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました