複数の系外惑星のサイズが想定より大きい可能性(UC Irvine astronomers discover scores of exoplanets may be larger than realized)

2025-07-14 カリフォルニア大学アーバイン校(UCI)

複数の系外惑星のサイズが想定より大きい可能性(UC Irvine astronomers discover scores of exoplanets may be larger than realized)
An exoplanet host with several background stars. If left uncorrected, the additional light from the background stars can lead to underestimated exoplanet size measurements. The square grid represents individual pixels from NASA’s TESS satellite. Nikolai Berman / UC Irvine

カリフォルニア大学アーバイン校の研究で、TESSが検出した多数の太陽系外惑星の半径が実際より小さく見積もられていた可能性が判明。Gaiaの恒星データと新たなモデルを用い、観測時に隣接恒星の光が混入していたことを補正した結果、200以上の惑星が従来より大きいと判定された。これは地球型とされていた惑星の多くが、水の惑星やミニ・ネプチューンの可能性を示し、生物適地の再評価に影響を与える。

<関連情報>

TESSの太陽系外惑星は想像以上に大きい? Hundreds of TESS Exoplanets Might Be Larger than We Thought

Te Han, Paul Robertson, Timothy D. Brandt, Shubham Kanodia, Caleb Cañas, Avi Shporer, George Ricker, and Corey Beard
The Astrophysical Journal Letters  Published: 2025 July 14
DOI:10.3847/2041-8213/ade794

Abstract

The radius of a planet is a fundamental parameter that probes its composition and habitability. Precise radius measurements are typically derived from the fraction of starlight blocked when a planet transits its host star. The wide-field Transiting Exoplanet Survey Satellite (TESS) has discovered hundreds of new exoplanets, but its low angular resolution means that the light from a star hosting a transiting exoplanet can be blended with the light from background stars. If not fully corrected, this extra light can dilute the transit signal and result in a smaller measured planet radius. In a study of hundreds of TESS planet discoveries using deblended light curves from our validated methodology, we show that systematically incorrect planet radii are common in the literature: studies using various public TESS photometry pipelines have underestimated the planet radius by a weighted median of 6.1% ± 0.3%, leading to a ∼20% overestimation of planet density. The widespread presence of these biases in the literature has profoundly shaped—and potentially misrepresented—our understanding of the exoplanet population. Addressing these biases will refine the exoplanet mass–radius relation, reshape our understanding of exoplanet atmospheric and bulk composition, and potentially inform prevailing planet formation theories.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました