深海で燃料を生み出す技術(Making fuels from sunlight)

ad

2025-07-07 イェール大学

イェール大学の研究チームは、太陽光を利用してCO₂を燃料に変換する新たなハイブリッド光触媒技術を開発した。1つ目の研究では、シリコン微柱にフッ素コーティングを施し、触媒表面積と反応効率を大幅に向上させ、最大17倍の光電触媒活性と高効率なメタノール合成を実現。2つ目では、多孔質シリコンにレニウム分子触媒を固定し、CO₂を安定的に一酸化炭素に変換。いずれも太陽燃料の実用化に向けた重要な進展とされる。

<関連情報>

分子フラックス生成によるミリモル溶存炭素の太陽駆動選択的燃料化 Solar-driven selective conversion of millimolar dissolved carbon to fuels with molecular flux generation

Bin Liu,Zheng Qian,Xiang Shi,Haoqing Su,Wentao Zhang,Atsu Kludze,Yuze Zheng,Chengxing He,Rito Yanagi & Shu Hu
Nature Communications  Published:12 February 2025
DOI:https://doi.org/10.1038/s41467-025-56106-3

深海で燃料を生み出す技術(Making fuels from sunlight)

Abstract

The direct utilization of dissolved inorganic carbon in seawater for CO2 conversion promises chemical production on-demand and with zero carbon footprint. Photoelectrochemical (PEC) CO2 reduction (CO2R) devices promise the sustainable conversion of dissolved carbon in seawater to carbon products using sunlight as the only energy input. However, the diffusion-dominant transport mechanism and the near-zero concentration of CO2(aq) (CO2 dissolved in aqueous solution) in static seawater has made it extremely challenging to achieve high solar-to-fuel (STF) efficiency and high carbon-product selectivity. Here, where CO2(aq) as a reactant generated in situ by acidification of HCO3 flows continuously from BiVO4 photoanodes to Si photocathodes, enabling a single-step conversion of dissolved carbon into products. Our PEC device significantly increases the CO selectivity from 3% to 21%, which approaches the 30% theoretical limit according to multi-physics modeling. Meanwhile, the Si/BiVO4 PEC CO2R device achieved a STF efficiency of 0.71%. Such flow engineering achieves flow-dependent selectivity, rate, and stability in simulated seawater, thus promising practical solar fuel production at scale.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました