ロケットエンジンシミュレーションを90,000倍高速化するブレイクスルー(90000x Faster Breakthrough Cuts Rocket Engine Simulations from Days to Seconds)

ad

2025-07-07 テキサス大学オースチン校(UT Austin)

ロケットエンジンシミュレーションを90,000倍高速化するブレイクスルー(90000x Faster Breakthrough Cuts Rocket Engine Simulations from Days to Seconds)
These plots show the pressure fields over time for a rotating detonation rocket engine, where the detonation wave rotates around the annulus of the engine and creates thrust. Credit: Farcas

テキサス大学オースティン校の研究チームが、ローテーティング・デトネーション・ロケット・エンジン(RDRE)のシミュレーションを従来の約3日からわずか数秒へと大幅に短縮する手法を開発。高精度な流体データに基づき、分散コンピューティングと物理学に基づく機械学習を組み合わせて、迅速な予測を可能にする代替モデルを構築した。これにより、設計案の即時検証や最適化が可能となり、次世代推進システムの開発が加速する。研究は米空軍研究所の支援を受けた。

<関連情報>

スケールの大きな物理ベースのデータ駆動型縮小モデリングのための分散コンピューティング: 回転起爆ロケットエンジンへの応用 Distributed computing for physics-based data-driven reduced modeling at scale: Application to a rotating detonation rocket engine

Ionuţ-Gabriel Farcaş, Rayomand P. Gundevia, Ramakanth Munipalli, Karen E. Willcox
Computer Physics Communications  Available online: 14 April 2025
DOI:https://doi.org/10.1016/j.cpc.2025.109619

Abstract

High-performance computing (HPC) has revolutionized our ability to perform detailed simulations of complex real-world processes. A prominent contemporary example is from aerospace propulsion, where HPC is used for rotating detonation rocket engine (RDRE) simulations in support of the design of next-generation rocket engines; however, these simulations take millions of core hours even on powerful supercomputers, which makes them impractical for engineering tasks like design exploration and risk assessment. Data-driven reduced-order models (ROMs) aim to address this limitation by constructing computationally cheap yet sufficiently accurate approximations that serve as surrogates for the high-fidelity model. This paper contributes a distributed memory algorithm that achieves fast and scalable construction of predictive physics-based ROMs trained from sparse datasets of extremely large state dimension. The algorithm learns structured physics-based ROMs that approximate the dynamical systems underlying those datasets. This enables model reduction for problems at a scale and complexity that exceeds the capabilities of standard, serial approaches. We demonstrate our algorithm’s scalability using up to 2,048  cores on the Frontera supercomputer at the Texas Advanced Computing Center. We focus on a real-world three-dimensional RDRE for which one millisecond of simulated physical time requires one million core hours on a supercomputer. Using a training dataset of 2,536 snapshots each of state dimension 76 million, our distributed algorithm enables the construction of a predictive data-driven reduced model in just 13 seconds on 2,048 cores on Frontera.

0101機械設計
ad
ad
Follow
ad
タイトルとURLをコピーしました