ラグランジアン乱流の新たな数学的洞察(New mathematical insights into Lagrangian turbulence)

ad

2025-07-08 カリフォルニア大学サンタバーバラ校 (UCSB)

ラグランジアン乱流の新たな数学的洞察(New mathematical insights into Lagrangian turbulence)
Photo Credit:Courtesy image
A simulation of Lagrangian turbulence, with a ballistic region on the right, superdiffusing into a Lagrangian region, followed by an Eulerian region and finally a region of “free eddies.”

カリフォルニア大学サンタバーバラ校のビョルン・ビルニル教授らは、ラグランジュ乱流に関する新たな数学的理論を発表。粒子の動きを追う視点で乱流を解析し、初期の「弾道流」から「ラグランジュ領域」、さらに「オイラー領域」への移行を統計的に記述。特にこれまで理論不在だった中間領域に「スケーリング則」が存在することを確証し、自由渦を含む4つの段階的スケーリングを示した。モデルはナビエ-ストークス方程式の数値シミュレーションと高い一致を示し、気象や海流、エアロゾル拡散予測など実応用にも寄与が期待される。

<関連情報>

ラグランジュ構造関数のスケーリング Scaling of Lagrangian structure functions

Björn Birnir and Luiza Angheluta
Physical Review Research  Published: 3 June, 2025
DOI: https://doi.org/10.1103/PhysRevResearch.7.023225

Abstract

We use stochastic closure theory and generalized Green-Kubo relations to show that the velocity structure functions have two distinct scaling regimes connected by a passover. Initially, after a brief ballistic (Batchelor) scaling, the structure functions exhibit a Lagrangian scaling regime with no intermittency, and then pass over to a regime with Eulerian scaling, with intermittency. This transition time for the passover region is controlled by the second structure function, through a generalization of Green-Kubo-Obukhov relations. The ultimate time interval of decay seems to be controlled by the scaling of free eddies, analogous to the scaling in the buffer layer of boundary layer turbulence [B. Birnir, L. Angheluta, J. Kaminsky, and X. Chen, Spectral link of the Generalized Townsend-Perry constants in turbulent boundary layers, Phys. Rev. Res. 3, 043054 (2021)]. The dip observed in the log-derivatives of the structure function [L. Biferale, E. Bodenschatz, M. Cencini, A. S. Lanotte, N. T. Ouellette, F. Toschi, and H. Xu, Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation, Phys. Fluids 20, 065103 (2008)], with respect to the second structure function 2, is caused only by the time scales probed by 2. It seems better to take the log-derivative with respect to , instead of 2, to fully understand the different scaling regimes of Lagrangian turbulence.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました