重い中空原子の生成と構造に関する新たな知見(Studies Offer New Insights into Production and Structure of Heavy Hollow Atoms)

ad

2025-07-07 中国科学院(CAS)

重い中空原子の生成と構造に関する新たな知見(Studies Offer New Insights into Production and Structure of Heavy Hollow Atoms)Figure 1. Kα satellite and hyper-satellite lines emitted by the hollow xenon atoms. (Image by IMP)

中国科学院近代物理研究所(IMP)の研究チームは、全荷電重イオンと原子の衝突によって、高効率に「重いホロー原子(内殻に複数の空孔を持つ原子)」を生成できることを実証した。ランジョウ重イオン研究施設(HIRFL)でのキセノン同士の衝突実験により、ホローキセノン原子の相対生成率がK殻単空孔原子より28.6%高いことを発見。さらに、内殻多重電離イオンX線の微細構造を高精度で測定するため、独自に開発した高解像度・広帯域のプラナー結晶分光器を導入し、従来の装置より20倍以上の検出効率を達成した。この装置は最大19.3keVの広いダイナミックレンジと優れたエネルギー分解能を備え、今後の高強度重イオン加速器施設(HIAFやLEAF)での応用が期待される。

<関連情報>

L殻多電離原子のX線研究のための小型真空平板結晶分光器の開発 Development of a compact vacuum flat-crystal spectrometer for X-ray studies of L-shell multi-ionized atoms

W. Wang, C.J. Shao, D.Y. Yu, X.H. Cai
Spectrochimica Acta Part B: Atomic Spectroscopy  Available online: 17 June 2025
DOI:https://doi.org/10.1016/j.sab.2025.107256

Highlights

  • Compact Design.
  • Innovative Target-Crystal Synchronization.
  • Wide Bragg Angle Operating Range.
  • High Resolving Power and Detection Efficiency.
  • Broad Applicability.

Abstract

We present the development of a highly compact vacuum flat-crystal spectrometer designed for the precise analysis of X-ray spectra of L-shell multi-ionized atoms. The design incorporates a mathematical framework to elucidate the influence of geometrical parameters on spectral bandwidth, energy resolution, and detection efficiency.

The spectrometer operates over an energy range of 0.53–19.3 keV, achieving a single-exposure spectral bandwidth of 0.04–6.58 keV. This performance is achieved by the combination of multiple flat crystals and a design featuring linear target motion synchronized with crystal rotation, allowing Bragg angle modulation from 25° to 65°.

The spectrometer was calibrated using L-series X-ray generated by 10 keV electron beam interactions with a solid silver target. Comparative performance tests indicated that the resolving power of the mosaic HOPG(002) crystal exceeds 400, while the perfect Si(111) crystal approaches 500. However, the mosaic HOPG exhibited over 20 times higher detection efficiency, making it especially effective for detecting rare transitions in high-sensitivity X-ray spectroscopy.

This spectrometer offers broad applicability across diverse fields, including chemical effects on X-ray parameters, synchrotron radiation experiments, laser plasma diagnostics, and laboratory astrophysics.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました