バクテリアセルロースによるプラスチック代替材料の開発(University of Houston Engineer Creates a Possible Replacement for Plastic)

ad

2025-07-08 ヒューストン大学(UH)

バクテリアセルロースによるプラスチック代替材料の開発(University of Houston Engineer Creates a Possible Replacement for Plastic)
Rahman holds the bioplastic, made of bacterial cellulose, that could replace plastic

ヒューストン大学のラフマン准教授らは、細菌が生産するバクテリアセルロースを用い、石油系プラスチックに代わる高性能バイオ素材を開発した。ローテーショナル培養でナノファイバーを整列させることで、強靭で柔軟かつ透明なシートを形成。さらにボロンナイトライドナノシートを加えることで、引張強度は最大553MPa、熱伝導性も3倍に向上した。使い捨て製品や医療、エレクトロニクスなど多用途に展開可能で、環境負荷の少ない素材として注目されている。

<関連情報>

バクテリアセルロースをインターカレートした流動誘起2次元ナノ材料 Flow-induced 2D nanomaterials intercalated aligned bacterial cellulose

M.A.S.R. Saadi,Yufei Cui,Shyam P. Bhakta,Sakib Hassan,Vijay Harikrishnan,Ivan R. Siqueira,Matteo Pasquali,Matthew Bennett,Pulickel M. Ajayan & Muhammad M. Rahman
Nature Communications  Published:01 July 2025
DOI:https://doi.org/10.1038/s41467-025-60242-1

Abstract

Bacterial cellulose is a promising biodegradable alternative to synthetic polymers due to the robust mechanical properties of its  nano-fibrillar building blocks. However, its full potential of mechanical properties remains unrealized, primarily due to the challenge of aligning nanofibrils at the macroscale. Additionally, the limited diffusion of other nano-fillers within the three-dimensional nanofibrillar network impedes the development of multifunctional bacterial cellulose-based nanosheets. Here, we report a simple, single-step, and scalable bottom-up strategy to biosynthesize robust bacterial cellulose sheets with aligned nanofibrils and bacterial cellulose-based multifunctional hybrid nanosheets using shear forces from fluid flow in a rotational culture device. The resulting bacterial cellulose sheets display high tensile strength (up to ~ 436 MPa), flexibility, foldability, optical transparency, and long-term mechanical stability. By incorporating boron nitride nanosheets into the liquid nutrient media, we fabricate bacterial cellulose-boron nitride hybrid nanosheets with even better mechanical properties (tensile strength up to ~ 553 MPa) and thermal properties (three times faster rate of heat dissipation compared to control samples). This biofabrication approach yielding aligned, strong, and multifunctional bacterial cellulose sheets would pave the way towards applications in structural materials, thermal management, packaging, textiles, green electronics, and energy storage.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました