量子ドット太陽電池で高効率な再生可能エネルギー実現へ(Solar Cells: Back to the Basics, Forward to the Future)

2025-06-26 ミシガン工科大学(Michigan Tech)

ミシガン工科大学の研究チームは、量子ドット(CdSe)を用いた薄膜型太陽電池において、UVパルスレーザー堆積(UV-PLD)法で電子・ホール輸送層の品質を高め、変換効率11%を達成。これは従来の量子ドット太陽電池に比べ大きな進歩で、将来的には複数のQDを組み合わせることでシリコンセル並みの効率も期待される。コスト面・製造面で優位性があり、次世代太陽電池技術として注目されている。

<関連情報>

サステイナブル酸化物薄膜を用いた高効率量子ドット太陽電池 Efficient Quantum Dot Solar Cells with Sustainable Oxide Thin Films

Amit Acharya,Mingxiao Ye,Jeff Kabel,Sambhawana Sharma,Anjana Asthana,Kumar Neupane,Join Uddin,Dongyan Zhang,and Yoke Khin Yap
ACS Applied Energy Materials  Published: June 9, 2025
DOI:https://doi.org/10.1021/acsaem.5c00612

Abstract

量子ドット太陽電池で高効率な再生可能エネルギー実現へ(Solar Cells: Back to the Basics, Forward to the Future)

Thin-film solar cells are more promising for low-cost and large-area photovoltaic devices. Tremendous efforts have been invested in using cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite thin films for energy harvesting. In contrast, zinc oxide (ZnO) and molybdenum trioxides (MoO3) are relatively earth-abundant, environmentally stable, and sustainable for thin-film solar cells. ZnO nanostructures have recently gained success in producing effective (∼8.55%) quantum dot solar cells (QDSCs). While nanostructures offer high surface areas to receive electrons from quantum dots (QDs), they are dominated by surface dangling bonds. These defects can trap electrons and limit effective transport at the interface between the ZnO nanostructures and QDs. We anticipate that QDSCs based on thin-film materials can minimize such interface trapping states and be more efficient than those demonstrated with ZnO nanostructures. We strategically develop quality ZnO and MoO3 thin films to produce QDSCs with power conversion efficiency as high as 11.4%. Our approach will inspire others to use scalable thin-film technology and QDs for solar energy harvesting based on sustainable ZnO and MoO3.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました