量子古典ハイブリッド手法で化学系を研究(New Hybrid Quantum-Classical Computing Approach Used to Study Chemical Systems)

ad

2025-06-25 カリフォルニア工科大学(Caltech)

Caltechの研究チームは、量子計算と古典計算を組み合わせたハイブリッド手法により、生体に重要な鉄–硫黄クラスター[4Fe‑4S]の電子状態を高精度で解析することに成功した。77量子ビットのIBM量子プロセッサとRIKENのスーパーコンピュータ「富岳」を連携させることで、従来困難だった複雑な化学系の波動関数を解明。この成果は、量子計算が実用的な化学研究に応用可能であることを示し、量子中心スーパーコンピューティングの新たな可能性を拓いた。

<関連情報>

量子中心スーパーコンピュータにおける厳密対角化のスケールを超えた化学 Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer

Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, […] , and Antonio Mezzacapo
Science Advances  Published:18 Jun 2025
DOI:https://doi.org/10.1126/sciadv.adu9991

量子古典ハイブリッド手法で化学系を研究(New Hybrid Quantum-Classical Computing Approach Used to Study Chemical Systems)

Abstract

A universal quantum computer can simulate diverse quantum systems, with electronic structure for chemistry offering challenging problems for practical use cases around the hundred-qubit mark. Although current quantum processors have reached this size, deep circuits and a large number of measurements lead to prohibitive runtimes for quantum computers in isolation. Here, we demonstrate the use of classical distributed computing to offload all but an intrinsically quantum component of a workflow for electronic structure simulations. Using a Heron superconducting processor and the supercomputer Fugaku, we simulate the ground-state dissociation of N2 and the ground state properties of [2Fe-2S] and [4Fe-4S] clusters, with circuits up to 77 qubits and 10,570 gates. The proposed algorithm processes quantum samples to produce upper bounds for the ground-state energy and sparse approximations to the ground-state wave functions. Our results suggest that, for current error rates, a quantum-centric supercomputing architecture can tackle challenging chemistry problems beyond sizes amenable to exact diagonalization.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました