AIモデルでオゾン汚染の予測精度を向上(New AI-powered Model Improves Ozone Pollution Forecasting)

ad

2025-06-09 中国科学院(CAS)

AIモデルでオゾン汚染の予測精度を向上(New AI-powered Model Improves Ozone Pollution Forecasting)気象プロセスの時空間的進化特性を統合したCNN-LSTM機械学習フレームワーク(画像提供:HU Feng)

中国科学院・合肥物質科学研究院の謝品華(XIE Pinhua)教授らの研究チームは、北中国平原(NCP)と長江デルタ(YRD)における地上オゾン濃度予測のため、AIベースの新モデル「CNN-LSTM時空間統合モデル」を開発しました。これは従来の予測法が見落としがちな大気循環や雲量、高度境界層などの時空間的気象要因を統合的に取り入れ、高精度な予測を実現。高濃度オゾン事象(MDA8≥160μg/m³)に対し、NCPでは83%、YRDでは56%の的中率を達成し、日変動説明力はR²>0.85。また、台風の進路変化とオゾン濃度への影響も定量化し、予測の堅牢性を示しました。本研究は夏季のオゾン汚染に対する早期警戒体制の構築に貢献すると期待されます。

<関連情報>

中国華北平原と長江デルタにおけるオゾン変動と地域気象過程のマッピング Mapping Regional Meteorological Processes to Ozone Variability in the North China Plain and the Yangtze River Delta, China

Feng Hu,Pinhua Xie,Jin Xu,Xin Tian,Zhidong Zhang,Yansheng Lv,Qiang Zhang,Youtao Li,and Wen-qing Liu
Environmental Science & Technology  Published: May 8, 2025
DOI:https://doi.org/10.1021/acs.est.4c11988

Abstract

High-concentration ozone threatens human health and ecosystems, modulated by dynamic, multiscale meteorological processes. Existing machine learning studies for ozone prediction rarely incorporate the spatiotemporal evolution of regional meteorological fields (STRMFs), limiting the explanatory power of meteorological drivers in ozone variability. Thus, a sequential convolutional long short-term memory network framework (CNN-LSTM) was designed to utilize the STRMFs for ozone prediction. Scenarios incorporating STRMFs across multiple spatiotemporal scales were constructed using Global Forecast System (GFS) data sets. Model performance was evaluated in terms of ozone concentration prediction accuracy (AOCP) and precision in forecasting high-ozone pollution events (PHOE) across key Chinese regions. Appropriate expansion of meteorological data spatiotemporal scale enhanced AOCP, with notable improvements in PHOE, demonstrating ozone variability’s dependence on multiscale meteorological processes. Leveraging meteorological data that better represent real atmospheric conditions improved AOCP. The CNN-LSTM framework explained over 85% of daily ozone variability through STRMF integration, successfully resolving how ozone concentration variations in key regions responded to typhoon positional shifts. This methodology enables timely pollution alerts while elucidating the critical role of regional meteorological processes in ozone pollution.

1101大気管理
ad
ad
Follow
ad
タイトルとURLをコピーしました