VRがロボットと働く従業員の訓練に貢献(VR could help train employees working with robots)

ad

2025-05-28 ジョージア大学(UGA)

VRがロボットと働く従業員の訓練に貢献(VR could help train employees working with robots)
The VR Co-Lab program places users in a digital environment similar to what they may see in the workplace, where they can learn to work with robots. (Submitted)

ジョージア大学の研究チームは、リサイクル現場での人間とロボットの協働作業を訓練するため、VRトレーニングシステム「VR Co-Lab」を開発しました。このシステムでは、ユーザーがVR空間で電子機器の解体作業をロボットと共同で練習できます。VRは非定型な解体作業の学習に効果的で、作業時間やエラー数のフィードバックが提供されます。Meta Quest Proのボディトラッキングにより安全性も向上し、今後さらなる適用拡大が予定されています。

<関連情報>

VR Co-Lab: 人間とロボットの分解トレーニングと合成データ生成のためのバーチャルリアリティプラットフォーム VR Co-Lab: A Virtual Reality Platform for Human–Robot Disassembly Training and Synthetic Data Generation

Yashwanth Maddipatla,Sibo Tian,Xiao Liang,Minghui Zheng and Beiwen Li
Machines  Published: 17 March 2025
DOI:https://doi.org/10.3390/machines13030239

Machines 13 00239 g001Machines 13 00239 g002

Abstract

This research introduces a virtual reality (VR) training system for improving human–robot collaboration (HRC) in industrial disassembly tasks, particularly for e-waste recycling. Conventional training approaches frequently fail to provide sufficient adaptability, immediate feedback, or scalable solutions for complex industrial workflows. The implementation leverages Quest Pro’s body-tracking capabilities to enable ergonomic, immersive interactions with planned eye-tracking integration for improved interactivity and accuracy. The Niryo One robot aids users in hands-on disassembly while generating synthetic data to refine robot motion planning models. A Robot Operating System (ROS) bridge enables the seamless simulation and control of various robotic platforms using Unified Robotics Description Format (URDF) files, bridging virtual and physical training environments. A Long Short-Term Memory (LSTM) model predicts user interactions and robotic motions, optimizing trajectory planning and minimizing errors. Monte Carlo dropout-based uncertainty estimation enhances prediction reliability, ensuring adaptability to dynamic user behavior. Initial technical validation demonstrates the platform’s potential, with preliminary testing showing promising results in task execution efficiency and human–robot motion alignment, though comprehensive user studies remain for future work. Limitations include the lack of multi-user scenarios, potential tracking inaccuracies, and the need for further real-world validation. This system establishes a sandbox training framework for HRC in disassembly, leveraging VR and AI-driven feedback to improve skill acquisition, task efficiency, and training scalability across industrial applications.

 

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました