仮想モデルが先進的な原子炉の実現に道を開く(Virtual models paving the way for advanced nuclear reactors)

ad

2025-05-28 アルゴンヌ国立研究所(ANL)

米国エネルギー省のアルゴンヌ国立研究所(Argonne National Laboratory)は、先進的な原子炉の効率性と信頼性を向上させるため、グラフニューラルネットワーク(GNN)を活用したデジタルツイン技術を開発しました。この技術は、実際の原子炉の構造や運転条件を仮想空間で再現し、リアルタイムでの挙動予測や異常検知を可能にします。特に、実験的高速増殖炉(EBR-II)やフッ化物塩冷却高温炉(gFHR)などのモデル化に成功し、運転中の変化に迅速かつ正確に対応できることが示されました。このアプローチは、原子炉の設計や運用、保守における意思決定を支援し、安全性と経済性の向上に寄与することが期待されています。

<関連情報>

先進リアクターのための全システムデジタルツインの開発: グラフニューラルネットワークとSAMシミュレーションの活用 Development of Whole System Digital Twins for Advanced Reactors: Leveraging Graph Neural Networks and SAM Simulations

Yang Liu,Farah Alsafadi,Travis Mui,Daniel O’Grady & Rui Hu
Nuclear Technology  Published:16 Oct 2024
DOI:https://doi.org/10.1080/00295450.2024.2385214

Abstract

In this work, we introduce a novel method to develop whole system digital twins (DTs) for advanced nuclear reactors. This method treats a complex reactor system as a heterogeneous graph: with the system components as different types of graph nodes and their physical interconnections as edges. Based on the heterogeneous graph, a graph neural network combining graph convolution and temporal node attention is developed as the DT, facilitating a comprehensive understanding of the system’s dynamic behavior. By utilizing the System Analysis Module (SAM) code for simulating various operational transients, we develop a graph-based database that trains the DT. This DT is characterized by two primary functions: It can infer the entire system’s status using sparse node information, and it can predict the progress of transients based on current and historical system information. Our approach is validated through case studies on the Experimental Breeder Reactor II (EBR-II) system and a generic Fluoride-salt-cooled High-temperature Reactor (gFHR), demonstrating the DT’s accuracy in forecasting operational transients. The DT’s rapid computation capabilities enhance its potential for supporting advanced reactor operations, offering benefits in intelligent simulation, autonomous control, and anomaly detection, paving the way for improved safety analysis and intelligent component health management for advanced reactor systems and reducing their operations and maintenance cost.

2000原子力放射線一般
ad
ad
Follow
ad
タイトルとURLをコピーしました