スマートウェアの耐久性と快適性を向上させる3D印刷技術(3D printing technology improves comfort, durability of ‘smart wearables’)

ad

2025-05-13 ワシントン州立大学(WSU)

ワシントン州立大学(WSU)の研究チームは、スマートウェアラブルデバイスの快適性と耐久性を向上させる新たな3Dプリント技術を開発しました。従来のスマート衣料は硬さや耐久性の不足が課題でしたが、WSUの技術は柔軟性と強度を兼ね備えた材料を用いることで、これらの問題を解決します。この技術により、センサーや電子部品を組み込んだウェアラブルデバイスがより快適に、長期間使用できるようになります。また、個々のユーザーに合わせたカスタマイズも可能で、医療やスポーツ分野での応用が期待されています。この研究成果は、スマートウェアラブルの実用化と普及を加速させるものとして注目されています。

<関連情報>

スマートウェアラブルのための柔軟で耐久性のある直接インク描画3Dプリント導電性ファブリック Flexible and Durable Direct Ink Writing 3D-Printed Conductive Fabrics for Smart Wearables

Zihui Zhao,Wangcheng Liu and Hang Liu
ACS Omega  Published: April 1, 2025
DOI:https://doi.org/10.1021/acsomega.4c11367

Abstract

スマートウェアの耐久性と快適性を向上させる3D印刷技術(3D printing technology improves comfort, durability of ‘smart wearables’)

Functional fabrics have broad applications in smart wearables, offering diverse functions, such as sensing, energy harvesting, and actuation. The use of 3D printing to deposit functional materials onto textile fabrics has emerged as a transformative approach in smart wearable development due to the advantages it offers. However, achieving the desired functionalities while maintaining the fabric’s flexibility, wearing comfort, washability, and durability of the printed material remains a challenge. In this study, direct ink writing (DIW) 3D printing technology was employed to print polybutylene succinate (PBS) solutions containing carbon nanotubes (CNTs) onto two types of fabrics. Various properties of the printed fabrics were assessed to examine the influence of printing solutions, fabric structures, and postprinting processes on printing performance. The printed fabrics exhibited excellent electrical conductivity, mechanical strength, gauge factor, and stability under repeated strains. These characteristics highlight their potential for use in smart wearable devices such as strain- and motion-detecting sensors. Analysis of the printed fabric morphologies revealed that factors such as fiber content, yarn structure, and surface roughness of the substrate fabric, along with the rheological properties and surface tension of the printing solution, played key roles in determining the wetting and penetration behaviors of the solution on the substrate. The solution’s ability to penetrate and bond with fibers provided the printed fabrics with enhanced washability and abrasion resistance, demonstrating the advantages of DIW printing technology in developing textile-based sensors for smart wearables. Additionally, by using biobased and biodegradable nontoxic Cyrene as the solvent for processing, the printed fabric is safer for smart wearables, and the process is more environmentally friendly than commonly used toxic solvents for PBS.

0604繊維二次製品の製造及び評価
ad
ad
Follow
ad
タイトルとURLをコピーしました