オンデマンドで生成される量子もつれフォトン(Quantum entangled photons on demand)

ad

2025-05-12 カリフォルニア大学サンタバーバラ校 (UCSB)

オンデマンドで生成される量子もつれフォトン(Quantum entangled photons on demand)

Photo Credit Courtesy image
(a) An image of an AlGaAs-on-insulator (AlGaAsOI) chip with 14 sets of microring array devices with fiber input and output coupled to one array. (b) A micrograph of the device, showing an array of 20 microresonators coupled to a single bus waveguide.

カリフォルニア大学サンタバーバラ校(UCSB)とイタリア・パヴィア大学の研究チームは、チップスケールで高効率かつ安定した量子もつれ光子を生成するプラットフォームを開発しました。この技術は、アルミニウムガリウムヒ素(AlGaAs)製のマイクロ共振器リングにレーザー光を注入し、光子を循環させることで、異なる周波数のもつれ光子対を高密度に生成します。さらに、複数の共振器を集積し、各リングの周波数を微調整することで、情報密度を従来の40倍以上に向上させることに成功しました。この成果は、量子通信や量子コンピューティングの大規模化に向けた重要な一歩となります。研究成果は『PRX Quantum』誌に掲載され、今後は他の光学部品との統合によるさらなる小型化と高効率化が期待されています。

<関連情報>

AlGaAsマイクロ共振器アレイを用いた高速エンタングルメント生成のための汎用チップスケールプラットフォーム Versatile Chip-Scale Platform for High-Rate Entanglement Generation Using an Al⁢Ga⁢As Microresonator Array

Yiming Pang, Joshua E. Castro, Trevor J. Steiner, Liao Duan, Noemi Tagliavacche, Massimo Borghi, Lillian Thiel, Nicholas Lewis, John E. Bowers, et al.
PRX Quantum  Published 3 March, 2025
DOI: https://doi.org/10.1103/PRXQuantum.6.010338

Abstract

Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an Al⁢Ga⁢As-on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to 50-GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to 95%, coincidence-to-accidental ratios exceeding 5000, and an on-chip pair rate up to 2.6 G⁢Hz/mW2 per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87% (90% with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately 70 MHz on-chip pair rate) using a pump power of approximately 250 μ⁢W. Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity.

 

AlGaAs-On-Insulatorマイクロ共振器からの超高輝度エンタングルフォトンペア生成 Ultrabright Entangled-Photon-Pair Generation from an Al⁢Ga⁢As-On-Insulator Microring Resonator

Trevor J. Steiner, Joshua E. Castro, Lin Chang, Quynh Dang, Weiqiang Xie, Justin Norman, John E. Bowers, and Galan Moody
PRX Quantum  Published: 4 March, 2021
DOI: https://doi.org/10.1103/PRXQuantum.2.010337

Abstract

Entangled-photon pairs are an essential resource for quantum-information technologies. Chip-scale sources of entangled pairs have been integrated with various photonic platforms, including silicon, nitrides, indium phosphide, and lithium niobate, but each has fundamental limitations that restrict the photon-pair brightness and quality, including weak optical nonlinearity or high waveguide loss. Here, we demonstrate a novel ultralow-loss Al⁢Ga⁢As-on-insulator platform capable of generating time-energy entangled photons in a >1 million microring resonator with nearly 1000-fold improvement in brightness compared to existing sources. The waveguide-integrated source exhibits an internal generation rate greater than 20 ×109 pairs s−1 mW−2, emits near 1550 nm, produces heralded single photons with >99% purity, and violates Bell’s inequality by more than 40 standard deviations with visibility >97%. Combined with the high optical nonlinearity and optical gain of Al⁢Ga⁢As for active component integration, these are all essential features for a scalable quantum photonic platform.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました