ソフトロボット、空中ケーブル輸送を実現(High-Wire Act: Soft Robot Can Carry Cargo Up and Down Steep Aerial Wires)

ad

2025-04-28 ノースカロライナ州立大学 (NC State)

ソフトロボット、空中ケーブル輸送を実現(High-Wire Act: Soft Robot Can Carry Cargo Up and Down Steep Aerial Wires)

ノースカロライナ州立大学の研究チームは、赤外線光を利用して自律移動する「ソフトリングロボット」を開発した。このロボットは液晶エラストマー素材でできており、細いワイヤーやケーブル上をねじりながら昇降できる。自重の12倍以上の荷物を運び、最大80度の傾斜を登れることが実証された。複雑な曲線や三次元螺旋軌道にも対応可能であり、将来的に工業用輸送や環境モニタリングへの応用が期待されている。

<関連情報>

空中軌道誘導型自律型ソフトリングロボット Aerial Track-Guided Autonomous Soft Ring Robot

Fangjie Qi, Caizhi Zhou, Haitao Qing, Haoze Sun, Jie Yin
Advanced Science  Published: 25 April 2025
DOI:https://doi.org/10.1002/advs.202503288

Abstract

Navigating in three-dimensional (3D) environments with precise motion control is challenging for soft robots due to their inherent flexibility. Inspired by aerial trams, here, an autonomous soft twisted ring robot is reported capable of navigating pre-defined tracks in 3D space under constant photothermal actuation, without requiring spatiotemporal control of actuation sources. Made of liquid crystal elastomers, the ring robot, suspended on thread-based tracks, self-flips around its centerline when exposed to constant infrared light. Curling the twisted ring around tracks converts its self-rotary motion into autonomous linear movement via screw theory. This mechanism enables the autonomous robot to adapt to tracks of various materials and micron-to-millimeter sizes, overcome obstacles like knots on tracks, transport loads over 12 times its weight, ascend and descend steep slopes up to 80°, and navigate complex paths, including circular, polygonal, and 3D spiral tracks, as well as loose threads with dynamically changing shapes.

弾性不安定性の活用による性能の増幅: スパインに触発された高速・高力ソフトロボット Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots

Yichao Tang, Yinding Chi, Jiefeng Sun, Tzu-Hao Huang, […] , and Jie Yin
Science Advances  Published:8 May 2020
DOI:https://doi.org/10.1126/sciadv.aaz6912

Abstract

Soft machines typically exhibit slow locomotion speed and low manipulation strength because of intrinsic limitations of soft materials. Here, we present a generic design principle that harnesses mechanical instability for a variety of spine-inspired fast and strong soft machines. Unlike most current soft robots that are designed as inherently and unimodally stable, our design leverages tunable snap-through bistability to fully explore the ability of soft robots to rapidly store and release energy within tens of milliseconds. We demonstrate this generic design principle with three high-performance soft machines: High-speed cheetah-like galloping crawlers with locomotion speeds of 2.68 body length/s, high-speed underwater swimmers (0.78 body length/s), and tunable low-to-high-force soft grippers with over 1 to 103 stiffness modulation (maximum load capacity is 11.4 kg). Our study establishes a new generic design paradigm of next-generation high-performance soft robots that are applicable for multifunctionality, different actuation methods, and materials at multiscales.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました