ミリメートルサイズの結晶にテラバイト規模のデータを格納 (Terabytes of data in a millimeter crystal )

ad

2025-02-14 アメリカ合衆国・シカゴ大学

ミリメートルサイズの結晶にテラバイト規模のデータを格納 (Terabytes of data in a millimeter crystal )
A crystal used in the study charges under UV light. The process created by Zhong Lab could be used with a variety of materials, taking advantage of rare earths’ powerful, flexible optical properties. (Image courtesy of Zhong Lab)

米シカゴ大学プリツカー分子工学部の研究チームは、ミリメートルサイズの結晶にテラバイト級データを保存できる新技術を開発した。希土類元素プラセオジムを含む酸化イットリウム結晶に紫外線レーザーを照射し、電子を欠陥に閉じ込めて「0」「1」を記録。1立方ミリに10億超のセルを格納でき、従来の光学メモリを超える高密度記録が可能。量子技術を応用した古典コンピュータ向けメモリで、米エネルギー省が支援。学術誌『Nanophotonics』に掲載。

<関連情報>

希土類ドープ酸化物における電荷トラップ欠陥の全光学的制御 All-optical control of charge-trapping defects in rare-earth doped oxides

Leonardo V. S. França , Shaan Doshi , Haitao Zhang and Tian Zhong
Nanophotonics  Published:February 14, 2025
DOI:https://doi.org/10.1515/nanoph-2024-0635

Abstract

Charge-trapping defects in crystalline solids play important roles in applications ranging from microelectronics, optical storage, sensing and quantum technologies. On one hand, depleting trapped charges in the host matrix reduces charge noise and enhances coherence of solid-state quantum emitters. On the other hand, stable charge traps can enable high-density optical storage systems. Here we report all-optical control of charge-trapping defects via optical charge trapping (OCT) spectroscopy of a rare-earth ion doped oxide (Y2O3). Charge trapping is realized by low intensity optical excitation in the 200–375 nm range. Charge detrapping or depletion is carried out by optically stimulated luminescence (OSL) under 532 nm stimulation. Using a Pr-doped Y2O3 polycrystalline ceramic host matrix, we observe charging pathways via the inter-band optical absorption of Y2O3 and via the 4f-5d transitions of Pr3+. We demonstrate effective control of the density of trapped charges within the Y2O3 matrix at ambient environment. These results point to a viable method for controlling the local charge environment in rare-earth doped crystals via all-optical means, and pave the way for further development of efficient optical storage technologies with ultrahigh storage capacity, as well as for the localized control of quantum coherence in rare-earth doped solids.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました