折り紙構造に着想を得た3Dプリントセラミックの開発(University of Houston Engineer Reinvents Ceramics with Origami-Inspired 3D Printing)

ad

2025-04-23 ヒューストン大学(UH)

ヒューストン大学の研究チームは、折り紙の「ミウラ折り」構造と柔軟なポリマーコーティングを組み合わせ、従来は脆いとされるセラミックスに柔軟性と耐衝撃性を持たせる新技術を開発しました。この3Dプリント技術により、セラミックスが圧力を受けても割れずに曲がる構造体が実現され、医療用義肢や航空宇宙、ロボティクス分野での応用が期待されています。実験では、コーティングされた構造体が静的および動的圧縮試験で高い耐久性を示し、未加工のセラミックスが破損する状況でも形状を保持しました。この成果は、セラミックスの設計において折り紙の幾何学的パターンが新たな機能性を引き出す可能性を示しています。

<関連情報>

超弾性コーティングを施したマクロスケールのセラミック折り紙構造体 Macroscale ceramic origami structures with hyper-elastic coating

Md Shajedul Hoque Thakur,Methu Dev Nath,Pulickel M. Ajayan,Glaucio H. Paulino & Muhammad M. Rahman
Advanced Composites and Hybrid Materials  Published:03 April 2025
DOI:https://doi.org/10.1007/s42114-025-01284-3

折り紙構造に着想を得た3Dプリントセラミックの開発(University of Houston Engineer Reinvents Ceramics with Origami-Inspired 3D Printing)

Abstract

Origami-based technologies offer a promising avenue for constructing deployable, adaptable, and lightweight structures. While much of the research on origami-inspired metamaterials has been focused on materials with inherent flexibility and ductility, there is noteworthy importance in utilizing brittle materials that undergo catastrophic failure even in quasi-static loading. Herein, we explore the possibility of utilizing origami engineering to divert the catastrophic failure nature of brittle materials into a graceful failure mode. To induce flexibility, we 3D printed a ceramic-based Miura-ori structure and coated it with a biocompatible hyperelastic polymer. We performed quasi-static and cyclic compression tests in three orthogonal directions on the printed origami structure with and without the hyperelastic coating and compared them with finite element simulations. Remarkably, the simulations closely matched the outcomes of the actual experiments. Through the combination of experiments and numerical simulations, we observed consistently higher toughness in the coated origami structure compared to the uncoated one. Additionally, the increase in toughness varied across directions, with the most significant improvement occurring in the least stiff direction. This research sheds light on the mechanics of origami engineering within brittle materials at a macroscale, particularly suitable in applications such as prosthetics and other medical domains.

0102材料力学
ad
ad
Follow
ad
タイトルとURLをコピーしました