水素結合性マイクロ環境によるCO2電気還元の強化(USTC Engineers Hydrogen-bonding Microenvironment to Boost CO2 Electroreduction)

ad

2025-04-21 中国科学院(CAS)

中国科学院の中国科学技術大学の研究チームは、酵素の働きに着想を得て、電気化学的CO₂還元反応(CO₂RR)を効率化する新しい戦略を開発した。触媒の活性点周囲に水素結合マイクロ環境を構築し、*COOH中間体の形成エネルギー障壁を低減することに成功。特定のCo(salen)とピリジル基修飾カルボン酸を金属有機構造体(MOF)に共導入し、空間配置を精密に制御。最適化された材料は従来の触媒より高い活性と選択性を示し、PyrH•ラジカルと電解質中のTFE分子が協働して安定な中間体を形成することで反応効率を高めた。

<関連情報>

機能化MOFナノシートにおけるその場生成水素結合微小環境によるCO2電気還元反応の促進 In situ generated hydrogen-bonding microenvironment in functionalized MOF nanosheets for enhanced CO2 electroreduction

Ge Yang, Jiajia Huang, Weizhi Gu, +7 , and Hai-Long Jiang
Proceedings of the National Academy of Sciences  Published:April 10, 2025
DOI:https://doi.org/10.1073/pnas.2419434122

Significance

The microenvironment around catalytic sites, created by the precisely arranged amino acid residues, has been proved to play significant roles in enzyme catalysis. Inspired by this, the construction of biomimetic microenvironment is a promising way to improve catalytic performance of artificial catalysts while this remains a great challenge. Our study presents the precise modulation of hydrogen-bonding microenvironment in functionalized metal-organic framework nanosheets by the in situ transformation of pyridinic units under working potentials. The in situ generated hydrogen-bonding microenvironment around catalytically active Co(salen) units facilitates the stabilization of *COOH intermediate and therefore greatly enhances CO2 electroreduction. This unambiguously demonstrates the significance of microenvironment around catalytic sites and unveils in situ dynamic transformation mechanism during electrocatalysis.

Abstract

The microenvironment around catalytic sites plays crucial roles in enzymatic catalysis while its precise control in heterogeneous catalysts remains challenging. Herein, the coordinatively unsaturated metal nodes of Hf-based metal-organic framework nanosheets are simultaneously codecorated with catalytically active Co(salen) units and adjacent pyridyl-substituted alkyl carboxylic acids via a post modification route. By varying pyridyl-substituted alkyl carboxylic acids, the spatial positioning of the N atom in pyridine group relative to adjacent Co(salen) can be precisely controlled. Notably, the 3-(pyridin-4-yl)propionic acid, with para-position pyridine N atom, maximally improves the electrocatalytic CO2 reduction performance of Co(salen) unit, far superior to other counterparts. Mechanism investigations reveal that the pyridine unit of 3-(pyridin-4-yl)propionic acid is optimally positioned relative to Co(salen) and undergoes in situ reduction to pyridinyl radical under working potentials. This greatly facilitates the stabilization of *COOH intermediate via hydrogen-bonding interaction, lowering the formation energy barrier of *COOH and therefore boosting CO2 electroreduction.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました