トマト植物が成長点の成熟を遅らせて高温耐性を実現(Tomato Plants Delay Shoot Meristem Maturation to Achieve Heat-Stress Resilience)

ad

2025-04-03 中国科学院(CAS)

中国科学院遺伝・発育生物学研究所の徐曹教授率いる研究チームは、トマトが熱ストレス下で茎頂分裂組織(SAM)の成熟を遅らせることで耐熱性を高める新たな適応戦略を明らかにしました。研究では、熱ストレスにより活性酸素種(ROS)が蓄積し、花成抑制因子であるTMFタンパク質の相分離を促進することが示されました。この変化により、TMF凝集体が花成遺伝子の転写抑制を延長し、SAMの発達を再プログラム化します。その結果、植物は栄養成長期を延長し、不利な条件下での早期の生殖移行を回避します。この適応戦略は、第一果房の収量損失を34–63%防ぐことが確認され、気候変動に対応した作物育種に新たな視点を提供します。

<関連情報>

トマトのシュート頂端分裂組織の成熟を遅らせ、熱ストレス耐性を獲得するためのROSバーストによる転写凝縮の延長 ROS burst prolongs transcriptional condensation to slow shoot apical meristem maturation and achieve heat-stress resilience in tomato

Xiaozhen Huang∙ Nan Xiao∙ Yue Xie∙ Cao Xu
Developmental Cell  Published:April 2, 2025
DOI:https://doi.org/10.1016/j.devcel.2025.03.007

Graphical abstract

トマト植物が成長点の成熟を遅らせて高温耐性を実現(Tomato Plants Delay Shoot Meristem Maturation to Achieve Heat-Stress Resilience)

Highlights

•Tomato plants slow shoot meristem maturation to achieve heat-stress resilience

•Heat-induced ROS lengthen vegetative growth to avoid reproductive failure

•ROS burst prolongs transcriptional condensation of TMF to repress floral transition

•Transient phase-wise slow growth may be a bet-hedging strategy for heat resilience

Summary

The transition of the shoot apical meristem (SAM) from vegetative growth to flowering, a key step of angiosperm reproductive success, is highly vulnerable to heat stress. Overproduction of reactive oxygen species (ROS) is a hallmark of such environmental stresses, but how SAM exploits the extra ROS to achieve heat-stress resilience is largely unknown. Here, we report that tomato plants respond to heat-induced ROS burst by slowing down SAM maturation and lengthening the vegetative state to achieve heat resilience. Heat-induced extra ROS prolonged the transcriptional condensation status of TERMINATING FLOWER (TMF), a prion-like transcription repressor that undergoes phase separation by sensing hydrogen peroxide (H2O2), therefore temporarily delaying activation of flowering transition and extending vegetative growth. Loss-of-function of TMF, or base editing of a single cysteine residue that senses H2O2, abolishes heat resilience. Our findings demonstrate that transcriptional reprogramming triggered by ROS might be a molecular basis of plant developmental plasticity underlying heat-stress resilience.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました