バッテリーの不良診断技術が性能向上に貢献(Diagnosing a dud may lead to a better battery)

ad

2025-04-01 バージニア工科大学(Virginia Tech)

バージニア工科大学の化学者チームが、電池の電極と電解質が接触する界面を詳細に観察する新しいイメージング技術を開発しました。この技術により、これまで直接観察が難しかった電池内部の複雑な構造や化学反応を明らかにすることが可能となりました。研究チームは、この手法を用いて、電池の劣化や性能低下の原因となる界面の問題点を特定し、より効率的で耐久性の高い電池設計への道を開くことを目指しています。

<関連情報>

高電位リチウム電池における電極-多相ポリマー電解質界面の不均一性の影響の解明 Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries

Jungki Min,Seong-Min Bak,Yuxin Zhang,Mingyu Yuan,Nicholas F. Pietra,Joshua A. Russell,Zhifei Deng,Dawei Xia,Lei Tao,Yonghua Du,Hui Xiong,Ling Li,Louis A. Madsen &Feng Lin
Nature Communications  Published:01 April 2025
DOI:https://doi.org/10.1038/s41565-025-01885-5

バッテリーの不良診断技術が性能向上に貢献(Diagnosing a dud may lead to a better battery)

Abstract

Polymer electrolytes hold great promise for safe and high-energy batteries comprising solid or semi-solid electrolytes. Multiphase polymer electrolytes, consisting of mobile and rigid phases, exhibit fast ion conduction and desired mechanical properties. However, fundamental challenges exist in understanding and regulating interactions at the electrode|electrolyte interface, especially when using high-potential layered oxide active materials at the positive electrode. Here we demonstrate that depletion of the mobile conductive phase at the interface contributes to battery performance degradation. Molecular ionic composite electrolytes, composed of a rigid-rod ionic polymer with nanometric mobile cations and anions, serve as a multiphase platform to investigate the evolution of ion conductive domains at the interface. Chemical and structural characterizations enable the visualization of concentration heterogeneity and spatially resolve the interfacial chemical states over a statistically significant field of view for buried interfaces. We report that concentration and chemical heterogeneities prevail at electrode|electrolyte interfaces, leading to phase separation in polymer electrolytes. Understanding the hidden roles of interfacial chemomechanics in polymer electrolytes enables us to design an interphase tailoring strategy based on electrolyte additives to mitigate the interfacial heterogeneity and improve battery performance.

 

高分子電解質膜におけるアライメントと輸送の線形結合 Linear coupling of alignment with transport in a polymer electrolyte membrane

Jing Li,Jong Keun Park,Robert B. Moore & Louis A. Madsen
Nature Materials  Published:19 June 2011
DOI:https://doi.org/10.1038/nmat3048

extended data figure 1

Abstract

Polymer electrolyte membranes (PEMs) selectively transport ions and polar molecules in a robust yet formable solid support. Tailored PEMs allow for devices such as solid-state batteries,‘artificial muscle’ actuators and reverse-osmosis water purifiers. Understanding how PEM structure and morphology relate to mobile species transport presents a challenge for designing next-generation materials. Material length scales from subnanometre1,2 to 1 μm (refs 3, 4) influence bulk properties such as ion conductivity and water transport. Here we employ multi-axis pulsed-field-gradient NMR (ref. 5) to measure diffusion anisotropy, and 2H NMR spectroscopy5,6 and synchrotron small-angle X-ray scattering7 to probe orientational order as a function of water content and of membrane stretching. Strikingly, transport anisotropy linearly depends on the degree of alignment, signifying that membrane stretching affects neither the nanometre-scale channel dimensions nor the defect structure,causing only domain reorientation. The observed reorientation of anisotropic domains without perturbation of the inherent nematic-like domain character parallels the behaviour of nematic elastomers8, promises tailored membrane conduction and potentially allows understanding of tunable shape-memory effects in PEM materials9. This quantitative understanding will drive PEM design efforts towardsoptimal membrane transport, thus enabling more efficient polymeric batteries, fuel cells, mechanical actuators and water purification.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました