光による量子計算の根本的進展を発見(Researchers Find Fundamental Breakthrough for Quantum Computing With Light)

ad

2025-03-20 ジョージア工科大学(Georgia Tech)

ジョージア工科大学の研究チームは、光子間に量子もつれを生成する新しい手法を開発しました。従来、光子は量子コンピュータに理想的ながらも相互作用しにくいという課題がありましたが、今回の手法では「非可換量子ホロノミー」を用い、測定を必要とせずにもつれを生み出すことに成功しました。このプロトコルはチップ上のフォトニックデバイスで実装可能で、スケーラブルな量子コンピュータの実現に貢献する画期的な成果と評価されています。

<関連情報>

非アベリアン量子ホロノミーから生じる決定論的フォトニック・エンタングルメント Deterministic Photonic Entanglement Arising from Non-Abelian Quantum Holonomy

Aniruddha Bhattacharya and Chandra Raman
Physical Review Letters  Published 24 February, 2025
DOI:https://doi.org/10.1103/PhysRevLett.134.080201

Abstract

Realizing deterministic, high-fidelity entangling interactions—of the kind that can be utilized for efficient quantum information processing—between photons remains an elusive goal. Here, we address this long-standing issue by devising a protocol for creating and manipulating highly entangled superpositions of well-controlled states of light by using an on-chip photonic system that has recently been shown to implement three-dimensional, non-Abelian quantum holonomy. Our calculations indicate that a subset of such entangled superpositions are maximally entangled, “volume-law” states, and that the underlying entanglement can be distilled and purified for applications in quantum science. Crucially, we generalize this approach to demonstrate the potentiality of deterministically entangling two arbitrarily high, -dimensional quantum systems, by formally establishing a deep connection between the matrix representations of the unitary quantum holonomy—within energy-degenerate subspaces in which the total excitation number is conserved—and the (2⁢+1)-dimensional irreducible representations of the rotation operator, where =(−1)/2 and ≥2. Specifically, our protocol deterministically entangles spatially localized modes that are not only distinguishable but are also individually accessible and amenable to state preparation and measurement, and therefore, we envisage that this entangling mechanism could be utilized for deterministic quantum information processing with light.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました