量子プロセッサ間の直接通信を可能にするデバイス(Device enables direct communication among multiple quantum processors)

ad

2025-03-21 マサチューセッツ工科大学(MIT)

MITの研究チームは、複数の超伝導量子プロセッサ間で光子を使って直接通信できる「相互接続デバイス」を開発しました。従来の「点対点」接続に代わり、「全対全通信(all-to-all)」が可能となり、スケーラブルな量子コンピュータ実現に貢献。デバイスは、光子を任意方向に送受信し遠隔エンタングルメント(量子もつれ)を生成します。強化学習で光子の形状を最適化し、60%以上の吸収効率を実現しました。

<関連情報>

キラル量子インターコネクトを用いた決定論的遠隔エンタングルメント Deterministic remote entanglement using a chiral quantum interconnect

Aziza Almanakly,Beatriz Yankelevich,Max Hays,Bharath Kannan,Réouven Assouly,Alex Greene,Michael Gingras,Bethany M. Niedzielski,Hannah Stickler,Mollie E. Schwartz,Kyle Serniak,Joel Î-j. Wang,Terry P. Orlando,Simon Gustavsson,Jeffrey A. Grover &William D. Oliver
Nature Physics  Published:21 March 2025
DOI:https://doi.org/10.1038/s41567-025-02811-1

量子プロセッサ間の直接通信を可能にするデバイス(Device enables direct communication among multiple quantum processors)

Abstract

Quantum interconnects facilitate entanglement distribution between non-local computational nodes in a quantum network. For superconducting processors, microwave photons are a natural means to mediate this distribution. However, many existing architectures limit node connectivity and directionality. In this work, we construct a chiral quantum interconnect between two nominally identical modules in separate microwave packages. Our approach uses quantum interference to emit and absorb microwave photons on demand and in a chosen direction between these modules. We optimize our protocol using model-free reinforcement learning to maximize the absorption efficiency. By halting the emission process halfway through its duration, we generate remote entanglement between modules in the form of a four-qubit W state with approximately 62% fidelity in each direction, limited mainly by propagation loss. This quantum network architecture enables all-to-all connectivity between non-local processors for modular and extensible quantum simulation and computation.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました