量子ハードウェアの相転移を解明し、次世代技術へ応用 (Unlocking the Secrets of Phase Transitions in Quantum Hardware)

ad

2025-03-14 スイス連邦工科大学ローザンヌ校(EPFL)

スイス連邦工科大学ローザンヌ校(EPFL)の研究者は、量子物質における相転移のメカニズムを解明する新手法を開発した。量子マテリアルは、超伝導やスピントロニクスなどの先端技術に不可欠だが、その相転移の詳細は十分に理解されていなかった。研究チームは最先端の計測技術とシミュレーションを組み合わせ、電子やスピンの相互作用を精密に解析する方法を確立。この成果は、量子デバイスや次世代エレクトロニクスの発展に寄与する可能性がある。

<関連情報>

2光子駆動Kerr共振器における1次および2次の散逸相転移の観測 Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator

Guillaume Beaulieu,Fabrizio Minganti,Simone Frasca,Vincenzo Savona,Simone Felicetti,Roberto Di Candia & Pasquale Scarlino
Nature Communications  Published:10 March 2025
DOI:https://doi.org/10.1038/s41467-025-56830-w

量子ハードウェアの相転移を解明し、次世代技術へ応用 (Unlocking the Secrets of Phase Transitions in Quantum Hardware)

Abstract

In open quantum systems, dissipative phase transitions (DPTs) emerge from the interplay between unitary evolution, drive, and dissipation. While second-order DPTs have been predominantly investigated theoretically, first-order DPTs have been observed in single-photon-driven Kerr resonators. We present here an experimental and theoretical analysis of both first and second-order DPTs in a two-photon-driven superconducting Kerr resonator. We characterize the steady state at the critical points, showing squeezing below vacuum and the coexistence of phases with different photon numbers. Through time resolved measurements, we study the dynamics across the critical points and observe hysteresis cycles at the first-order DPT and spontaneous symmetry breaking at the second-order DPT. Extracting the timescales of the critical phenomena reveals slowing down across five orders of magnitude when scaling towards the thermodynamic limit. Our results showcase the engineering of criticality in superconducting circuits, advancing the use of parametric resonators for critically-enhanced quantum information applications.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました