セラミックファイバーエアロゲルが熱絶縁技術にブレークスルーをもたらす (Nature-inspired Ceramic Fiber Aerogels Offer Breakthrough in Thermal Insulation)

ad

2025-03-12 中国科学院(CAS)

中国科学院の研究チームは、新しいセラミックファイバーエアロゲル「SiC@SiO₂」を開発した。木材の維管系やカイコの繭構造を模倣し、電気紡糸と凍結乾燥技術で秩序ある構造を実現。SiCナノファイバーにアモルファスSiO₂シェルを形成し、フォノンバリアを作ることで、優れた断熱性と熱安定性を確保した。このエアロゲルは、0.018 W/m·Kという超低熱伝導率と高い異方性係数(5.08)を示し、-196°Cから1,300°Cの範囲で構造的安定性を維持。弾性変形60%以上、比弾性率5.72 kN·m/kgという高い機械的回復力も持つ。航空宇宙やエネルギーシステムなど極限環境での断熱材として期待される。

<関連情報>

良好な熱伝導率異方性と耐高温性を有する高配向SiC@SiO2セラミックファイバーエアロゲル Highly Oriented SiC@SiO2 Ceramic Fiber Aerogels with Good Anisotropy of the Thermal Conductivity and High-Temperature Resistance

Zheng Zhang, Cui Liu, Nian Li, Wei Guo, Ying Li, Pengzhan Yang, Shudong Zhang, Zhenyang Wang
Advanced Science  Published: 06 March 2025
DOI:https://doi.org/10.1002/advs.202416740

セラミックファイバーエアロゲルが熱絶縁技術にブレークスルーをもたらす (Nature-inspired Ceramic Fiber Aerogels Offer Breakthrough in Thermal Insulation)

Abstract

Here electrospinning and freeze-drying techniques are combined to fabricate an anisotropic SiC@SiO2 ceramic fiber aerogels (A-SiC@SiO2-FAs). The anisotropic structure of the A-SiC@SiO2-FAs features aligned layers stacking layer-by-layer with the same direction and highly oriented 1D fibers inside each layer. The A-SiC@SiO2-FAs exhibit anisotropic thermal properties with an extremely low thermal conductivity of 0.018 W m−1 K−1 in the transverse direction (perpendicular to the SiC@SiO2 nanofibers) and ≈5 times higher thermal conductivity of 0.0914 W m−1 K−1 in the axial direction due to the highly oriented SiC@SiO2 nanofibers. The anisotropy factor of the A-SiC@SiO2-FAs is as high as 5.08, which exceeds most of the currently reported thermal insulation materials with anisotropic structural design, such as anisotropic wood aerogels, biaxially anisotropic PI/BC aerogels and anisotropic MXene foam, etc. The A-SiC@SiO2-FAs also have excellent thermal stability, maintaining structural integrity in oxidative environments at temperatures up to 1300 °C. Moreover, these structurally distinct A-SiC@SiO2-FAs result in superior elastic deformation with a radial recoverable strain exceeding 60% and an axial specific modulus of 5.72 kN m kg−1. These findings emphasize the potential of SiC nanofiber aerogels in extreme thermal environments and provide valuable insights for designing anisotropic insulation materials.

0600繊維一般
ad
ad
Follow
ad
タイトルとURLをコピーしました