光学を利用した新しい力センサーの開発 (Columbia Engineers Create Tiny Sensors That Can Measure Force With Optics, Not Wires)

ad

2025-01-01 コロンビア大学

コロンビア大学の研究チームは、機械的な力に応じて発光の強度や色を変化させる新しいナノスケールの光学センサーを開発しました。これらのセンサーは、希土類元素であるツリウムをドープしたナノ結晶を用いており、光のみで遠隔から読み取ることが可能です。従来の同様のナノプローブと比較して、100倍の感度と、4桁以上の力の範囲に対応できる広い動作範囲を持っています。この技術は、ロボット工学や細胞生物物理学、医療、宇宙旅行など、多岐にわたる分野での応用が期待されます。

<関連情報>

ピコニュートンからマイクロニュートンの力の赤外線ナノセンサー Infrared nanosensors of piconewton to micronewton forces

Natalie Fardian-Melamed,Artiom Skripka,Benedikt Ursprung,Changhwan Lee,Thomas P. Darlington,Ayelet Teitelboim,Xiao Qi,Maoji Wang,Jordan M. Gerton,Bruce E. Cohen,Emory M. Chan & P. James Schuck
Nature  Published:01 January 2025
DOI:https://doi.org/10.1038/s41586-024-08221-2

光学を利用した新しい力センサーの開発 (Columbia Engineers Create Tiny Sensors That Can Measure Force With Optics, Not Wires)

Abstract

Mechanical force is an essential feature for many physical and biological processes1,2,3,4,5,6,7, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics8, biophysics9,10, energy storage11 and medicine12,13. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces14,15,16. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems14,17. Here we demonstrate Tm3+-doped avalanching-nanoparticle18 force sensors that can be addressed remotely by deeply penetrating near-infrared light and can detect piconewton to micronewton forces with a dynamic range spanning more than four orders of magnitude. Using atomic force microscopy coupled with single-nanoparticle optical spectroscopy, we characterize the mechanical sensitivity of the photon-avalanching process and reveal its exceptional force responsiveness. By manipulating the Tm3+ concentrations and energy transfer within the nanosensors, we demonstrate different optical force-sensing modalities, including mechanobrightening and mechanochromism. The adaptability of these nanoscale optical force sensors, along with their multiscale-sensing capability, enable operation in the dynamic and versatile environments present in real-world, complex structures spanning biological organisms to nanoelectromechanical systems.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました