量子技術における新たな可能性を解き明かす研究(Macroscopic oscillators move as one at the quantum level)

ad

2025-01-06 カリフォルニア工科大学 (Caltech)

量子技術における新たな可能性を解き明かす研究(Macroscopic oscillators move as one at the quantum level)
A hexamer of macroscopic mechanical oscillators for studying quantum collective phenomena. Credit: Mahdi Chegnizadeh (EPFL)

スイス連邦工科大学ローザンヌ校(EPFL)の研究者たちは、6つの大型機械振動子を量子レベルで統一的に制御し、集団量子挙動を観測することに成功しました。この研究では「サイドバンド冷却」を利用して振動子を量子基底状態に冷却し、量子集団運動を実現。振動子間の高精度な同期が鍵で、これは量子センサーや量子コンピューティング技術の飛躍的進展を可能にします。この成果は将来の量子技術への応用が期待されています。

<関連情報>

巨視的機械振動子の量子集団運動 Quantum collective motion of macroscopic mechanical oscillators

Mahdi Chegnizadeh, Marco Scigliuzzo, Amir Youssefi, Shingo Kono, […], and Tobias J. Kippenberg
Science  Published:19 Dec 2024
DOI:https://doi.org/10.1126/science.adr8187

Editor’s summary

Micro- and nanomechanical oscillators can now be manipulated in the quantum regime. They can be entangled with other degrees of freedom and used for quantum teleportation and quantum storage. To date, these systems have been limited to single or pairs of oscillators. Chegnizadeh et al. now demonstrate scale-up, preparing a collective macroscopic system composed of several individual mechanical oscillators in the quantum ground state. The authors observed collective optomechanical phenomena, and such behavior could find applications in advanced quantum metrology and in fundamental studies of macroscopic quantum phenomena. —Ian S. Osborne

Abstract

Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of N = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform. By increasing the optomechanical couplings, the system transitions from individual to collective motion, characterized by a √N enhancement of cavity-collective mode coupling, akin to superradiance of atomic ensembles. Using sideband cooling, we prepare the collective mode in the quantum ground state and measure its quantum sideband asymmetry, with zero-point motion distributed across distant oscillators. This regime of optomechanics opens avenues for studying multipartite entanglement, with potential advances in quantum metrology.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました