ソフトロボットやスマートテキスタイルなどのための形状変化ソフトマテリアル(Shape-changing soft material for soft robotics, smart textiles and more)

ad

2024-12-17 ハーバード大学

ハーバード大学SEASの研究者たちは、液晶エラストマーを用いて1つの素材内で複数の形状変化をプログラムする技術を開発しました。液晶エラストマーは、光や熱などの刺激に応じて形状を変えるソフトマテリアルで、ソフトロボティクスやスマートテキスタイル、ウェアラブルデバイスへの応用が期待されています。従来は1種類の変形しか実現できませんでしたが、今回の技術では、材料内に複数の相転移を組み込み、温度変化によってシェブロン型から平坦な構造、さらにはコイル状構造へと変化させることが可能になりました。この成果は、温度調節が可能なロボットの皮膚や、形状を変化させるスマートテキスタイルの開発に新たな道を開くものと期待されています。

<関連情報>

多段階双方向変形可能な液晶エラストマーをプログラミング Programming liquid crystal elastomers for multistep ambidirectional deformability

Yuxing Yao, Atalaya Milan Wilborn, Baptiste Lemaire, Foteini Trigka, […], and Joanna Aizenberg
Science  Published:5 Dec 2024
DOI:https://doi.org/10.1126/science.adq6434

Editor’s summary

Designing structures capable of multiple deformations in response to a single stimulus requires some combination of hybrid material constructs, complex and precise geometric architectures, and multiple stimuli. Although liquid crystal elastomers (LCEs) can undergo large shape changes when driven through their isotropic-nematic transition, the change is typically unidirectional. Yao et al. designed and synthesized LCEs using two monomers that individually only show nematic-to-isotropic transitions. However, when combined, they display two liquid crystal phase transitions: isotropic to smectic A and smectic A to smectic C, thus allowing for ambidirectional deformability driven only by changes in temperature. As a result, two shape changes can be observed at the two transitions. —Marc S. Lavine

Abstract

Ambidirectionality, which is the ability of structural elements to move beyond a reference state in two opposite directions, is common in nature. However, conventional soft materials are typically limited to a single, unidirectional deformation unless complex hybrid constructs are used. We exploited the combination of mesogen self-assembly, polymer chain elasticity, and polymerization-induced stress to design liquid crystalline elastomers that exhibit two mesophases: chevron smectic C (cSmC) and smectic A (SmA). Inducing the cSmC-SmA–isotropic phase transition led to an unusual inversion of the strain field in the microstructure, resulting in opposite deformation modes (e.g., consecutive shrinkage or expansion and right-handed or left-handed twisting and tilting in opposite directions) and high-frequency nonmonotonic oscillations. This ambidirectional movement is scalable and can be used to generate Gaussian transformations at the macroscale.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました