自動運転車をより安全で事故の少ないものにする(Making self-driving cars safer, less accident prone)

ad

2024-12-10 ジョージア大学 (UGA)

自動運転車をより安全で事故の少ないものにする(Making self-driving cars safer, less accident prone)Self-driving cars have to accurately anticipate the movements of surrounding traffic. (Getty Images)

ジョージア大学(UGA)の研究者は、自動運転車の安全性を高めるため、新たな人工知能(AI)モデルを開発しました。従来のシステムは周囲の車両の動きを予測し、その後に自車の動きを計画していましたが、この手法では予測と現実のズレが衝突やニアミスを引き起こす可能性がありました。新モデルは、これらのステップを統合し、予測誤差を考慮に入れることで、より安全な走行計画を実現します。フロリダ州のI-75高速道路のデータを使用した実験では、このアプローチが安全性能の向上に寄与することが示されています。研究チームは、ChatGPTのような大規模言語モデルを活用し、交通シナリオに対する最適な行動を決定する複雑なAIモデルの開発にも取り組んでいます。しかし、具体的な走行軌道の設計においては、従来の軌道最適化モデルの方が効果的であるとしています。この研究は、自動運転車の安全性と機動性のバランスを取るための重要な一歩となると期待されています。

<関連情報>

コネクテッドカーと自動運転車の安全性を考慮したニューラルネットワーク Safety aware neural network for connected and automated vehicle operations

Handong Yao, Xiaopeng Li, Qianwen Li, Chenyang Yu
Transportation Research Part E: Logistics and Transportation Review  Available online: 27 September 2024
DOI:https://doi.org/10.1016/j.tre.2024.103780

Highlights

  • Introduce a novel safety-aware neural network framework for CAV operations.
  • Create recurrent neural cells embedded with car-following dynamics.
  • Employ time geography theory principles for safety regulation.
  • Yield robust solutions with the sequential unconstrained minimization technique.
  • Achieve substantial enhancements in safety and energy efficiency.

Abstract

Contemporary research in connected and automated vehicle (CAV) operations typically segregates trajectory prediction from planning in two segregated models. Trajectory prediction narrowly focuses on reducing prediction errors, disregarding the implications for subsequent planning. As a result, CAVs adhering to trajectories planned based on such predictions may collide with surrounding traffic. To mitigate such vulnerabilities, this study introduces a holistic safety-aware neural network (SANN) framework, representing a paradigm shift by integrating trajectory prediction and planning into a cohesive model. The SANN architecture incorporates prediction and planning layers, leveraging existing neural networks for prediction and introducing novel recurrent neural cells embedded with car-following dynamics for planning. The prediction layers are regulated by the CAV trajectory planning performance including safety, mobility, and energy efficiency. A key innovation of the SANN lies in its approach to safety regulation, which is based on actual, rather than forecasted, traffic movements. By applying time geography theory, it assesses CAV motion feasibility, setting limits on speed and acceleration for safety in line with actual traffic patterns. This feasibility analysis results are integrated into the neural loss function as a penalty factor, steering the optimization process towards safer CAV operations. The efficacy of the SANN is enhanced by employing the sequential unconstrained minimization technique, which enables the fine-tuning of penalty weights, thereby producing more robust solutions. Empirical evaluations, comparing the holistic SANN with conventional segregated models, demonstrate its superior performance. The SANN achieves substantial enhancements in safety and energy efficiency, with only a marginal compromise on mobility. This success underscores the significance of integrating machine learning with domain knowledge (operations research and traffic flow theory) for safer and more environmentally friendly CAV operations.

0108交通物流機械及び建設機械
ad
ad
Follow
ad
タイトルとURLをコピーしました