マイクロファイバー・プラスチックは、環境中で転がったり、転がったり、ゆっくり動いたりしているように見える(Microfiber plastics appear to tumble, roll and move slowly in the environment)

ad

2024-12-03 ワシントン州立大学(WSU)

ワシントン州立大学の研究者は、マイクロファイバープラスチックが環境中でどのように移動するかを初めてモデル化しました。この研究では、マイクロファイバーの長さと水の流速が、その移動挙動に大きく影響することが明らかになりました。特に、短いマイクロファイバーは複雑な動きを示し、水中の他の物質よりも速く移動する傾向があります。このモデルは、マイクロファイバーが土壌に留まるか、環境中を移動するかを予測するのに役立ちます。今後、実際の廃水処理施設での測定を行い、モデルの検証を進める予定です。

<関連情報>

理想化された多孔質媒体を通るモノフィラメント・マイクロプラスチック繊維の輸送挙動の実験的可視化とモデリング Experimental Visualization and Modeling of the Transport Behaviors of Monofilament Microplastic Fibers Through an Idealized Porous Media

Tyler T. Fouty, Nicholas B. Engdahl
Water Resources Research  Published: 30 October 2024
DOI:https://doi.org/10.1029/2024WR037901

マイクロファイバー・プラスチックは、環境中で転がったり、転がったり、ゆっくり動いたりしているように見える(Microfiber plastics appear to tumble, roll and move slowly in the environment)

Abstract

Microplastic fibers (MPF) are the largest fraction of microplastics in the environment by mass. The endpoints of these contaminants’ movement is generally known at large-scale (i.e., their origins and where they end up), but the mechanics of how they get to those sinks remains poorly understood. The objective of this work was to improve understanding of the mechanisms driving MPF migration through terrestrial systems by directly imaging their motion through idealized representations of porous media. Monofilament line with 0.3 mm diameter was passed through a bench-scale, pseudo-2d flow cell to capture trajectories of MPFs of three different lengths and trajectories of passive micro-bead tracers were also captured. Video processing and automated image analysis converted the video of the experiments into a database of trajectories, allowing comparison of the experimental data to various numerical models. Simple advection-dispersion models were adequate for modeling the passive tracer but did not provide a good description of MPF transport. A physics-based, distributed model was able to generate realistic trajectories through the domain, but the speeds of the fibers in the initial simulation were too fast, despite working well for the passive tracer. Adding a delay (waiting time) process resulted in good description of the trajectories and travel times. The specifics of the delay process could not be deduced from these experiments, but its overall impact on transport provides mechanistic insights. These direct observation of the trajectories and speeds of MPFs moving through porous media show that MPFs likely have strong interactions with their surroundings.

Key Points

  • Trajectories of monofilament plastic fibers were captured using bench-scale experiments
  • The microplastic fibers did not move through the porous media analogously to a passive tracer
  • Simulations were developed that accurately modeled the observed transport, with some caveats and limitations
0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました