超高速レーザーパルスと新しい分子プローブを用いた量子センシング(Quantum Sensing Using Ultrafast Laser Pulses and a New Class of Molecular Probes)

ad

2024-12-02 カリフォルニア工科大学(Caltech)

超高速レーザーパルスと新しい分子プローブを用いた量子センシング(Quantum Sensing Using Ultrafast Laser Pulses and a New Class of Molecular Probes)
Irradiation of a specially designed molecule with a laser pulse (green) generates an oscillating quantum mechanical superposition of two electron spin states. A second, weaker laser pulse (purple) is capable of measuring the evolution of the superposition on the femtosecond to picosecond timescale, significantly faster than previous methods. This new spectroscopic approach enables the study of molecular coherence under unprecedented chemical conditions and provides a platform for the development of quantum sensing applications.Credit: Caltech

カリフォルニア工科大学(Caltech)の研究チームは、超高速レーザーパルスと新しい分子プローブを組み合わせた量子センシング技術を開発しました。この手法により、従来の技術では検出が難しかった微小な磁場や電場の変化を高精度に測定することが可能となります。特に、分子プローブとして用いられる新しい材料は、量子特性を活用して感度を大幅に向上させています。この技術は、物理学や化学、生物学などの幅広い分野での応用が期待され、例えば、神経活動のリアルタイムモニタリングや新しい物質の特性評価などに貢献する可能性があります。

<関連情報>

室温水溶液中における分子電子スピンの超高速全光コヒーレンス Ultrafast all-optical coherence of molecular electron spins in room-temperature water solution

Erica Sutcliffe, Nathanael P. Kazmierczak, and Ryan G. Hadt
Science  Published:7 Nov 2024
DOI:https://doi.org/10.1126/science.ads0512

Editor’s summary

Molecular quantum bits (qubits), exhibit high tunability and spatial precision, making them highly favorable for use in quantum sensing applications. However, in most molecular systems at room temperature, electron spins decohere faster than the typical time resolution of most available instrumental methods, hindering the design of desired optical functionality. Using pump-probe polarization spectroscopy and the optimized molecular system K2IrCl6, the electronic structure of which was rationally chosen to couple light and spin, Sutcliffe et al. demonstrated picosecond all-optical detection of electron spin decoherence in molecules at room temperature in aqueous conditions and at low concentration. The presented methodology improves experimental time resolution by up to five orders of magnitude and opens up new opportunities for developing qubit platforms for sensing and information processing applications. —Yury Suleymanov

Abstract

The tunability and spatial precision of paramagnetic molecules makes them attractive for quantum sensing. However, usual microwave-based detection methods have poor temporal and spatial resolution, and optical methods compatible with room-temperature solutions have remained elusive. In this study, we utilized pump-probe polarization spectroscopy to initialize and track electron spin coherence in a molecule. Designed to efficiently couple spins to light, aqueous potassium hexachloroiridate(IV) enabled detection of few-picosecond free-induction decay at room temperature and micromolar concentrations. Viscosity was found to strongly vary decoherence lifetimes. This approach has improved the experimental time resolution by up to five orders of magnitude, making it possible to observe molecular electron spin coherence in a system that only exhibits coherence below 25 kelvin with traditional techniques.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました