天王星と海王星の淡白な表面の下にあるものを知る手がかり(A clue to what lies beneath the bland surfaces of Uranus and Neptune)

ad

2024-11-25 カリフォルニア大学バークレー校(UCB)

カリフォルニア大学バークレー校の惑星科学者バークハード・ミリッツァー教授は、天王星と海王星の内部構造に関する新たな理論を提案しました。彼の研究によれば、これらの惑星の内部は水の層と炭素、窒素、水素からなる層が存在し、これらの層は油と水のように混ざり合わないとされています。この層状構造は、これらの惑星が地球や木星、土星とは異なる独特な磁場を持つ理由を説明する可能性があります。この研究成果は、2024年11月25日に『Proceedings of the National Academy of Sciences』誌に掲載されました。

<関連情報>

惑星氷の相分離が天王星と海王星の非極性磁場を説明する Phase separation of planetary ices explains nondipolar magnetic fields of Uranus and Neptune

Burkhard Militzer
Proceedings of the National Academy of Sciences  Published:November 25, 2024
DOI:https://doi.org/10.1073/pnas.2403981121

天王星と海王星の淡白な表面の下にあるものを知る手がかり(A clue to what lies beneath the bland surfaces of Uranus and Neptune)

Significance

The Voyager spacecraft measured that Uranus and Neptune have nondipolar magnetic fields while strong dipole fields had been expected. Stanley and Bloxham thus proposed that the magnetic fields be generated only in a thin outer layer. Here, we predict what the materials in the interior layers are and why the lower layer is dynamo inactive. We demonstrate with ab initio simulations that planetary ices phase separate at high pressure into an upper, water-rich and a lower, hydrocarbon-dominated layer. The upper layer is convective and dynamo active while the lower layer is stably stratified. A signature of the stratification can be detected in normal modes, which lends support to placing a Doppler imager on a future Uranus mission.

Abstract

The Voyager spacecraft discovered that the ice giants Uranus and Neptune have nondipolar magnetic fields, defying expectations that a thick interior layer of planetary ices would generate strong dipolar fields. Stanley and Bloxham showed that nondipolar fields emerge if the magnetic field is only generated in a thin outer layer. However, the origin and composition of this dynamo active layer has so far remained elusive. Here, we show with ab initio computer simulations that a mixture of H2O, CH4, and NH3 will phase separate under the pressure–temperature condition in the interiors of Uranus and Neptune, forming a H2O-dominated fluid in the upper mantle and a CH4-NH3 mixture below. We further demonstrate that with increasing pressure, the CH4-NH3 mixture becomes increasingly hydrogen depleted as it assumes the state of a polymeric C-N-H fluid. Since the amount of hydrogen loss increases with pressure, we propose that the C-N-H fluid forms a stably stratified layer. The magnetic fields are primarily generated in an upper layer that is H2O-rich, homogeneous, convective, and electrically conducting. Under these assumptions, we construct ensembles of models for the interiors of Uranus and Neptune with the Concentric MacLaurin Spheroid method. We demonstrate that the phase separation of the solar-type H2O-CH4-NH3 mixture leads to models that match the observed gravity field and to layer thicknesses that are compatible with magnetic field measurements.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました