有害汚染粒子の測定(Measuring harmful pollution particles)

ad

2024-11-15 インペリアル・カレッジ・ロンドン(ICL)

インペリアル・カレッジ・ロンドンの研究者は、空気中の微粒子が健康に与える影響を評価する新しい装置を開発しました。この装置は、従来の24時間サンプリングではなく、5分ごとの連続測定を行い、人体の化学反応をシミュレーションして微粒子の有害性を評価します。ロンドン中心部での試験では、WHOの「安全」基準内の濃度でも異なる汚染源の影響を特定できることが示されました。この技術は、汚染の形成と健康への影響を理解し、より効果的な対策を可能にする重要なツールとなります。

<関連情報>

ロンドン中心部の道路沿いのスーパーサイトにおけるPM2.5酸化ポテンシャルの高時間分解能定量化 High time resolution quantification of PM2.5 oxidative potential at a Central London roadside supersite

Steven J. Campbell, Alexandre Barth, Gang I. Chen, Anja H. Tremper, Max Priestman, David Ek, Shuming Gu, Frank J. Kelly, Markus Kalberer, David C. Green
Environment International  Available online: 28 October 2024
DOI:https://doi.org/10.1016/j.envint.2024.109102

Graphical abstract

有害汚染粒子の測定(Measuring harmful pollution particles)

Highlights

  • OP was quantified at High Time resolution at a Roadside Supersite in London.
  • OPv and OPm were dynamic and variable, evolving over hourly timescales.
  • Dynamic OPv and OPm was observed at average PM2.5 mass concentrations 7.1 ± 4.2 µg m−3.
  • PM2.5 emission sources including Traffic (59%) and Subway (23%) drive OP at this location.

Abstract

The oxidative potential (OP) of airborne particulate matter (PM) is gaining increasing attention as a health-relevant metric to describe the capacity of PM to promote oxidative stress and cause adverse health effects. To date, most OP studies use filter-based approaches to sample PM and quantify OP, which have relatively poor time resolution (∼24 h) and underestimate the contribution of reactive components to OP due to the time delay between sample collection and analysis. To address this important limitation, we have developed a novel instrument which uses a direct-to-reagent sampling approach, providing robust, continuous, high time resolution (5 min) OP quantification, hence overcoming analytical limitations of filter-based techniques. In this study, we deployed this instrument in the Marylebone Road Air Quality Monitoring Station in London, UK, alongside a broad suite of high time resolution PM2.5 composition measurements for three months continuous measurement during Summer 2023. High time resolution OP quantification reveals dynamic changes in volume-normalised (OPv) and mass normalised (OPm) OP evolving over ∼hourly timescales, observed at an average PM2.5 mass concentration of 7.1 ± 4.2 µg m−3, below the WHO interim 4 target of 10 µg m−3. In addition, high time resolution data facilitates directional analysis, allowing us to determine the influence of wind speed and wind direction on OP, and the identification of PM2.5 chemical components and sources which drive dynamic changes in OP; this includes traffic emissions, as well as emissions from the London Underground into the ambient airshed. These results demonstrate the capacity of high time resolution measurements to provide new insights into the temporal evolution of OP, as well as the composition and emission sources which drive OP, developing our understanding of the characteristics of PM2.5 which may promote adverse health impacts.

1101大気管理
ad
ad
Follow
ad
タイトルとURLをコピーしました