次世代エレクトロニクスをより速く、より効率的にする新素材(New material to make next generation of electronics faster and more efficient)

ad

2024-11-07 ミネソタ大学

ミネソタ大学の研究者たちは、次世代の高性能電子機器をより高速で効率的にする新材料を開発しました。この人工設計された材料は、可視光や紫外線に透明である一方、電子の移動速度を向上させ、従来の限界を超える性能を実現しています。これは、高出力でエネルギー効率の高い半導体技術に重要な進展となり、特にAIや新技術の需要に応えるものです。

<関連情報>

ヘテロ構造設計による深紫外透明導電性SrSnO3 Deep-ultraviolet transparent conducting SrSnO3 via heterostructure design

Fengdeng Liu, Zhifei Yang, David Abramovitch, Silu Guo, […], and Bharat Jalan
Science Advances  Published:1 Nov 2024
DOI:https://doi.org/10.1126/sciadv.adq7892

次世代エレクトロニクスをより速く、より効率的にする新素材(New material to make next generation of electronics faster and more efficient)

Abstract

Exploration and advancements in ultrawide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. Here, we used a thin heterostructure design to facilitate high conductivity due to the low electron mass and relatively weak electron-phonon coupling, while the atomically thin films ensured high transparency. We used a heterostructure comprising SrSnO3/La:SrSnO3/GdScO3 (110), and applied electrostatic gating, which allow us to effectively separate charge carriers in SrSnO3 from dopants and achieve phonon-limited transport behavior in strain-stabilized tetragonal SrSnO3. This led to a modulation of carrier density from 1018 to 1020 cm−3, with room temperature mobilities ranging from 40 to 140 cm2 V−1 s−1. The phonon-limited mobility, calculated from first principles, closely matched experimental results, suggesting that room temperature mobility could be further increased with higher electron density. In addition, the sample exhibited 85% optical transparency at a 300-nm wavelength. These findings highlight the potential of heterostructure design for transparent UWBG semiconductor applications, especially in DUV regime.

0400電気電子一般
ad
ad
Follow
ad
タイトルとURLをコピーしました