AIに訓練された自動車は極端な乱気流に瞬時に適応できる(AI-Trained Vehicles Can Adjust to Extreme Turbulence on the Fly)

ad

2024-10-14 カリフォルニア工科大学(Caltech)

CaltechとNvidiaの研究者が開発したFALCON(Fourier Adaptive Learning and Control)は、強風や乱流に適応する無人航空機(UAV)用の新しい制御戦略です。AIによる強化学習を使用し、風の変化をリアルタイムで予測・適応します。従来の方法と異なり、FALCONは風の周波数を学習し、物理的な環境の変化に即応できるため、極端な気象条件でもUAVや航空機の安定を保つことが可能です。今後、航空機間での情報共有も視野に入れています。

<関連情報>

FALCON:極端な乱気流下での外乱拒絶のためのフーリエ適応学習と制御 FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence

Sahin Lale,Peter I. Renn,Kamyar Azizzadenesheli,Babak Hassibi,Morteza Gharib &Anima Anandkumar
npj Robotics  Published:24 September 2024
DOI:https://doi.org/10.1038/s44182-024-00013-0

AIに訓練された自動車は極端な乱気流に瞬時に適応できる(AI-Trained Vehicles Can Adjust to Extreme Turbulence on the Fly)

Abstract

Controlling aerodynamic forces in turbulent conditions is crucial for UAV operation. Traditional reactive methods often struggle due to unpredictable flow and sensor noise. We present FALCON (Fourier Adaptive Learning and Control), a model-based reinforcement learning framework for effective modeling and control of aerodynamic forces under turbulent flows. FALCON leverages two key insights: turbulent dynamics are well-modeled in the frequency domain, and most turbulent energy is concentrated in low-frequencies. FALCON learns a concise Fourier basis to model system dynamics from 35 s of flow data. To address sensor limitations, FALCON models dynamics using a short history of actions and measurements. With this approach, FALCON applies model predictive control for safe and efficient control. Tested in the Caltech wind tunnel under highly turbulent conditions, FALCON learns to control the underlying nonlinear dynamics with less than 9 min of data, consistently outperforming state-of-the-art methods. We provide guarantees for FALCON, ensuring stability and robustness.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました