星と惑星を成長させる風(Winds that make stars and planets grow)

ad

2024-10-04 マックス・プランク研究所

天文学者たちは、若い星を取り囲む原始惑星系円盤内のガス流を観察し、星が円盤から物質を吸収して成長するメカニズムを確認しました。特に、磁場に駆動される円盤風がガスを外に放出し、角運動量を失わせることで星が物質を引き寄せる仕組みが明らかになりました。ジェームズ・ウェッブ宇宙望遠鏡(JWST)を用いた観測により、円盤風の詳細な構造が捉えられ、星や惑星系の形成過程の理解が進みました。この研究は宇宙全体での共通性をさらに探ることを目指しています。

<関連情報>

JWST/NIRSpecの観測から明らかになった若い星の円盤風の入れ子形態 The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations

Ilaria Pascucci,Tracy L. Beck,Sylvie Cabrit,Naman S. Bajaj,Suzan Edwards,Fabien Louvet,Joan R. Najita,Bennett N. Skinner,Uma Gorti,Colette Salyk,Sean D. Brittain,Sebastiaan Krijt,James Muzerolle Page,Maxime Ruaud,Kamber Schwarz,Dmitry Semenov,Gaspard Duchêne & Marion Villenave
Nature Astronomy  Published:04 October 2024
DOI:https://doi.org/10.1038/s41550-024-02385-7

extended data figure 4

Abstract

Radially extended disk winds could be the key to unlocking how protoplanetary disks accrete and how planets form and migrate. A distinctive characteristic is their nested morphology of velocity and chemistry. Here we report James Webb Space Telescope near-infrared spectrograph spectro-imaging of four young stars with edge-on disks, three of which have already dispersed their natal envelopes. For each source, a fast collimated jet traced by [Fe ii] is nested inside a hollow cavity within wider lower-velocity H2. In one case, a hollow structure is also seen in CO ro-vibrational (v = 1 → 0) emission but with a wider opening angle than the H2, and both of those are nested inside an Atacama Large Millimeter Array CO (J = 2 → 1) cone with an even wider opening angle. This nested morphology, even for sources with no envelope, strongly supports theoretical predictions for wind-driven accretion and underscores the need for theoretical work to assess the role of winds in the formation and evolution of planetary systems.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました