AIパレイドリア: 機械は無生物から顔を発見できるか?(AI pareidolia: Can machines spot faces in inanimate objects?)

ad

2024-09-30 マサチューセッツ工科大学(MIT)

MITのCSAILが発表した新しい研究は、物体の中に顔を見出す「パレイドリア現象」を調査し、人間とAIの顔認識の違いを明らかにしました。5,000以上のパレイドリア画像を含む新しいデータセットを用いて、動物の顔認識を訓練することで、AIはパレイドリア的な顔をよりよく認識できるようになったことが判明。さらに、顔が見える可能性が最も高い「ゴルディロックスゾーン」も特定されました。この研究は、AI技術や製品デザインに応用が期待されています。

<関連情報>

モノの中の顔を見る: パレイドリアのモデルとデータセット Seeing Faces in Things: A Model and Dataset for Pareidolia

Mark Hamilton, Simon Stent, Vasha DuTell, Anne Harrington, Jennifer Corbett, Ruth Rosenholtz, William T. Freeman
arXiv  Submitted on 24 Sep 2024
DOI:https://doi.org/10.48550/arXiv.2409.16143

Abstract

The human visual system is well-tuned to detect faces of all shapes and sizes. While this brings obvious survival advantages, such as a better chance of spotting unknown predators in the bush, it also leads to spurious face detections. “Face pareidolia” describes the perception of face-like structure among otherwise random stimuli: seeing faces in coffee stains or clouds in the sky. In this paper, we study face pareidolia from a computer vision perspective. We present an image dataset of “Faces in Things”, consisting of five thousand web images with human-annotated pareidolic faces. Using this dataset, we examine the extent to which a state-of-the-art human face detector exhibits pareidolia, and find a significant behavioral gap between humans and machines. We find that the evolutionary need for humans to detect animal faces, as well as human faces, may explain some of this gap. Finally, we propose a simple statistical model of pareidolia in images. Through studies on human subjects and our pareidolic face detectors we confirm a key prediction of our model regarding what image conditions are most likely to induce pareidolia. Dataset and Website: this https URL

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました