新しい連続反応プロセスにより、植物廃棄物を持続可能な航空燃料に変えることができる(New continuous reaction process can help turn plant waste into sustainable aviation fuel)

ad

2024-09-26 ワシントン州立大学(WSU)

ワシントン州立大学の研究者が、植物廃棄物の主要成分であるリグニンを持続可能な航空燃料に変換する新しい連続反応プロセスを開発しました。このプロセスは「同時分解・水素脱酸素化」と呼ばれ、リグニンを分解し酸素を除去してジェット燃料を生成します。リグニン由来のジェット燃料は、密度や効率に優れ、既存の化石燃料と同様に使用できる可能性があり、航空業界のカーボンニュートラル目標達成に寄与すると期待されています。

<関連情報>

連続フローリアクターでリグニンベースのジェット燃料を製造する解重合とヒドロデオキシ化の同時プロセス A simultaneous depolymerization and hydrodeoxygenation process to produce lignin-based jet fuel in continuous flow reactor

Adarsh Kumar, David C. Bell, Zhibin Yang, Joshua Heyne, Daniel M. Santosa, Huamin Wang, Peng Zuo, Chongmin Wang, Ashutosh Mittal, Darryl P. Klein, Michael J. Manto, Xiaowen Chen, Bin Yang
Fuel Processing Technology  Available online: 2 September 2024
DOI:https://doi.org/10.1016/j.fuproc.2024.108129

Graphical abstract

新しい連続反応プロセスにより、植物廃棄物を持続可能な航空燃料に変えることができる(New continuous reaction process can help turn plant waste into sustainable aviation fuel)

Highlights

  • Simultaneous depolymerization and HDO of lignin demonstrated in continuous flow reactor.
  • Aviation fuel range cycloalkanes produced with 17.9 wt% carbon yield.
  • Tier alpha fuel properties identified these cycloalkanes as a good fit for aviation fuel.
  • Exchange of K+ ion from lignin solution and coke deposition to catalyst surface observed.

Abstract

Economical production of lignin-based jet fuel (LJF) can improve the sustainability of sustainable aviation fuels (SAFs) as well as can reduce the overall greenhouse gas emissions. However, the challenge lies in converting technical lignin polymer from biorefinery directly to jet fuel in a continuous operation. In this work, we demonstrate a simultaneous depolymerization and hydrodeoxygenation (SDHDO) process to produce lignin-based jet fuel from the alkali corn stover lignin (ACSL) using engineered Ru-HY-60-MI catalyst in a continuous flow reactor, for the first time. The maximum carbon yield of LJF of 17.9 wt% was obtained, and it comprised of 60.2 wt% monocycloalkanes, and 21.6 wt% polycycloalkanes. Catalyst characterization of Ru-HY-60-MI suggested there was no significant change in HY zeolite structure and its crystallinity after catalyst engineering. Catalyst characterizations performed post the SDHDO experiments indicate presence of carbon and K content in the catalyst. K content presence in the spent catalyst was due to K+ ion was exchanged between lignin solution and HY-60 while carbon presence validated the SDHDO chemistry on the catalyst surface. Tier α fuel property testing indicates that LJF production using SDHDO chemistry can produce SAF with high compatibility, good sealing properties, low emissions, and high energy density for aircraft.

0503燃料及び潤滑油
ad
ad
Follow
ad
タイトルとURLをコピーしました