AIで適応型レーダーの能力に革命を起こす(Revolutionizing the Abilities of Adaptive Radar With AI)

ad

2024-07-19 デューク大学(Duke)

デューク大学の研究者たちは、現代のAIアプローチとコンピュータビジョンの教訓を活用して、従来のアダプティブレーダーシステムの性能限界を突破しました。新しい論文では、畳み込みニューラルネットワーク(CNN)を使用してレーダーの性能を大幅に向上させる方法が示されています。彼らはまた、他のAI研究者が利用できるデジタル風景の大規模なデータセットを公開しました。このデータセットには、ユタ州のソルトフラッツからレイニア山までの100の仮想シナリオが含まれており、AIが特定の地形に適応する能力を向上させるために利用されます。

<関連情報>

適応型レーダー処理と畳み込みニューラルネットワークを使用したデータ駆動型目標位置特定 Data-driven target localization using adaptive radar processing and convolutional neural networks

Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid Tarokh
IET Radar, Sonar & Navigation  Published: 16 July 2024
DOI:https://doi.org/10.1049/rsn2.12600

AIで適応型レーダーの能力に革命を起こす(Revolutionizing the Abilities of Adaptive Radar With AI)

Abstract

Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView®, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました