量子コンピューターの意外な利点(Quantum computers’ unexpected advantage)

ad

2024-07-01 サンディア国立研究所(SNL)

サンディア国立研究所とボストン大学の理論計算機科学者たちは、量子コンピュータが高度な数学問題を解決する際に、通常のコンピュータよりもはるかに少ないメモリを使用することを発見しました。従来の「量子コンピュータは速い」という考え方を覆し、量子コンピュータの価値がメモリ効率にあることを示しています。彼らは、最大指向カット問題という自然なストリーミング問題に対する量子コンピュータの優位性を証明しました。これは、データが連続的に到着する際に、量子コンピュータがメモリ使用量で指数関数的に効率的であることを示しています。この発見は、量子コンピュータの将来の実用的な利用方法の手がかりとなる可能性があります。

<関連情報>

ストリーミングモデルにおける最大有向カットを近似する指数関数的量子空間の優位性 Exponential Quantum Space Advantage for Approximating Maximum Directed Cut in the Streaming Model

John Kallaugher, Ojas Parekh, Nadezhda Voronova
arXiv  Submitted on 23 Nov 2023
DOI:https://doi.org/10.48550/arXiv.2311.14123

Abstract

While the search for quantum advantage typically focuses on speedups in execution time, quantum algorithms also offer the potential for advantage in space complexity. Previous work has shown such advantages for data stream problems, in which elements arrive and must be processed sequentially without random access, but these have been restricted to specially-constructed problems [Le Gall, SPAA `06] or polynomial advantage [Kallaugher, FOCS `21]. We show an exponential quantum space advantage for the maximum directed cut problem. This is the first known exponential quantum space advantage for any natural streaming problem. This also constitutes the first unconditional exponential quantum resource advantage for approximating a discrete optimization problem in any setting.
Our quantum streaming algorithm 0.4844-approximates the value of the largest directed cut in a graph stream with n vertices using polylog(n) space, while previous work by Chou, Golovnev, and Velusamy [FOCS ’20] implies that obtaining an approximation ratio better than 4/9≈0.4444 requires Ω(n−−√) space for any classical streaming algorithm. Our result is based on a recent O˜(n−−√) space classical streaming approach by Saxena, Singer, Sudan, and Velusamy [FOCS ’23], with an additional improvement in the approximation ratio due to recent work by Singer [APPROX ’23].

自然ストリーミング問題に対する量子的優位性 A Quantum Advantage for a Natural Streaming Problem

John Kallaugher
arXiv  last revised 12 Nov 2021 (this version, v2)]
DOI:https://doi.org/10.48550/arXiv.2106.04633

Abstract

Data streaming, in which a large dataset is received as a “stream” of updates, is an important model in the study of space-bounded computation. Starting with the work of Le Gall [SPAA `06], it has been known that quantum streaming algorithms can use asymptotically less space than their classical counterparts for certain problems. However, so far, all known examples of quantum advantages in streaming are for problems that are either specially constructed for that purpose, or require many streaming passes over the input.
We give a one-pass quantum streaming algorithm for one of the best studied problems in classical graph streaming – the triangle counting problem. Almost-tight parametrized upper and lower bounds are known for this problem in the classical setting; our algorithm uses polynomially less space in certain regions of the parameter space, resolving a question posed by Jain and Nayak in 2014 on achieving quantum advantages for natural streaming problems.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました