微小で調整可能 多孔性結晶は分子の認識に優れている(Tiny and tunable: Porous crystals excel at recognizing molecules)

ad

2024-06-28 バッファロー大学(UB)

Rendering of a porous ICOF crystal.
Porous crystalline materials, known as covalent organic frameworks, as seen above, could revolutionize gas separation, catalysis and sensing. Credit: University at Buffalo.

多孔性結晶であるCOF(共価有機構造体)は、分子の大きさに応じて通過を制御するふるいのように機能します。この特性により、COFは産業用ガス分離のエネルギー消費と運用コストを大幅に削減できる可能性があります。しかし、COFの細孔を均一かつ十分に小さくする必要があります。バッファロー大学の研究者とコロラド大学ボルダー校および国立再生可能エネルギー研究所の同僚が、Science誌で発表した研究によれば、酸素とホウ素からなるオキシボレートを使用して、ICOFs(イオン性共価有機構造体)を作成し、メタン、窒素、酸素、二酸化炭素、水素を区別するのに十分小さい細孔を実現しました。ICOFsは、異なる温度での熱調整振動により、剛性と柔軟性を兼ね備えています。さらに、ICOFsをペレット形態にして吸着床に詰めることで、ガス混合物を分離する実用的な使用方法が提案されています。

<関連情報>

共有結合有機フレームワークの温度調節振動によって0.2オングストローム以下の分解能で分子を認識する Molecular recognition with resolution below 0.2 angstroms through thermoregulatory oscillations in covalent organic frameworks

YIMING HU, BRATIN SENGUPTA, HAI LONG, LACEY J. WAYMENT, […], AND WEI ZHANG
Science  Published:27 Jun 2024
DOI:https://doi.org/10.1126/science.adj8791

Editor’s summary

Gas separation is often done using solid membranes because it is hard to make porous ones with pores small enough to separate between gases that have similar atomic sizes. Hu et al. synthesized a series of ionic covalent organic framework (ICOF) materials by polymerizing monomers with tetraphenylborate linkages. These ICOFs exhibited a temperature-dependent linker oscillation that allows for dynamic control of the pore size through the rejection of some molecules due to the vibrations of the pores, with resolution down to 0.2 angstroms. The authors demonstrate size-dependent molecular recognition and separation of industry-relevant gases (O2, N2, CH4, CO2, and H2). —Marc S. Lavine

Abstract

Crystalline materials with uniform molecular-sized pores are desirable for a broad range of applications, such as sensors, catalysis, and separations. However, it is challenging to tune the pore size of a single material continuously and to reversibly distinguish small molecules (below 4 angstroms). We synthesized a series of ionic covalent organic frameworks using a tetraphenoxyborate linkage that maintains meticulous synergy between structural rigidity and local flexibility to achieve continuous and reversible (100 thermal cycles) tunability of “dynamic pores” between 2.9 and 4.0 angstroms, with resolution below 0.2 angstroms. This results from temperature-regulated, gradual amplitude change of high-frequency linker oscillations. These thermoelastic apertures selectively block larger molecules over marginally smaller ones, demonstrating size-based molecular recognition and the potential for separating challenging gas mixtures such as oxygen/nitrogen and nitrogen/methane.

ad
1700応用理学一般
ad
ad


Follow
ad
タイトルとURLをコピーしました