新しい材料が静電エネルギー貯蔵の技術革新を加速する(Novel material supercharges innovation in electrostatic energy storage)

ad

2024-04-23 ワシントン大学セントルイス校

新しい材料が静電エネルギー貯蔵の技術革新を加速する(Novel material supercharges innovation in electrostatic energy storage)Artificial heterostructures made of freestanding 2D and 3D membranes developed by Sang-Hoon Bae’s lab have an energy density up to 19 times higher than commercially available capacitors. (Image: Bae lab)

ワシントン大学セントルイス校のサン・フン・ベ博士の研究チームは、従来のキャパシターに比べて19倍のエネルギー密度を持つ、新型の人工ヘテロ構造を開発しました。このヘテロ構造は、2Dおよび3D材料を用いており、フェロ電気材料のエネルギーロスを最小限に抑えつつ、有利な材料特性を保持します。特に、非常に薄い3Dコアを2D層に挟むことで、約30ナノメートルの厚さのスタックを作り出し、電荷の消散や減衰の時間を制御する新しい方法を導入しました。

<関連情報>

緩和時間変調による人工ヘテロ構造の高エネルギー密度化 High energy density in artificial heterostructures through relaxation time modulation

SANGMOON HAN, JUSTIN S. KIM, EUGENE PARK, YUAN MENG, […], AND SANG-HOON BAE
Science  Published:18 Apr 2024
DOI:https://doi.org/10.1126/science.adl2835

Editor’s summary

Avoiding waste heat during capacitor operation is important for improving energy efficiency. Han et al. designed a dielectric heterostructure with barium titanate sandwiched between a two-dimensional material. Charge accumulation at the material interfaces under an alternating electric field changes the relaxation time of the heterostructure. This, in turn, can substantially reduce the energy loss when the right materials are chosen. The authors produced one such structure with high energy density and low loss using two-layer molybdenum disulfide and barium titanate. The general strategy should be useful for refining other dielectric materials. —Brent Grocholski

Abstract

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました