2023-11-04 カリフォルニア大学サンディエゴ校(UCSD)
◆原子を光導線に捕捉することで、量子デバイスの新展開が期待され、フォトニックリングに結びつけて回転センサーを開発する試みも進行中。この研究は、将来的にはアトミトロニック回路による柔軟なセンサー技術への可能性をも示唆しています。
<関連情報>
- https://today.ucsd.edu/story/atomic-highway
- https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.040308
ナノファイバーベースの光双極子トラップにおけるアルカリ土類原子の状態非感受性トラッピング State-Insensitive Trapping of Alkaline-Earth Atoms in a Nanofiber-Based Optical Dipole Trap
G. Kestler, K. Ton, D. Filin, C. Cheung, P. Schneeweiss, T. Hoinkes, J. Volz, M.S. Safronova, A. Rauschenbeutel, and J.T. Barreiro
PRX Quantum Published 12 October 2023
DOI:https://doi.org/10.1103/PRXQuantum.4.040308
ABSTRACT
Neutral atoms that are optically trapped using the evanescent fields surrounding optical nanofibers are a promising platform for developing quantum technologies and exploring fundamental science, such as quantum networks and many-body physics of interacting photons. Building on the successful advancements with trapped alkali atoms, here we trap strontium-88 atoms, an alkaline-earth element, in a state-insensitive, nanofiber-based optical dipole trap using the evanescent fields of an optical nanofiber. Employing a two-color, double magic-wavelength trapping scheme, we realize state-insensitive trapping of the atoms for the kilohertz-wide 5s21S0−5s5p3P1,|m|=1 intercombination transition, which we verify by performing high-resolution spectroscopy for an atom-surface distance of about 300 nm. This allows us to experimentally find and verify the state insensitivity of the trap nearby a theoretically predicted magic wavelength of 435.827(25) nm, a necessary step to confirm precision atomic physics calculations. Alkaline-earth atoms also exhibit nonmagnetic ground states and ultranarrow linewidth transitions making them ideal candidates for atomic clocks and precision metrology applications, especially with state-insensitive traps. Additionally, given the low collisional scattering length specific to strontium-88, this work also lays the foundation for developing versatile and robust matter-wave atomtronic circuits over nanophotonic waveguides.