粘り強さ: ビルディングブロックが溶液中で自発的に3Dオブジェクトを構築(Stick-to-itiveness: Building Blocks Spontaneously Construct 3D Objects in Solution)

ad

2023-07-31 ピッツバーグ大学

◆ピッツバーグ大学の化学工学研究者は、流体力学と化学力学的プロセスを利用し、微小な構造物を自己組織化させることに成功しました。この方法により、光学、電気、医療応用のデバイスの製造が革新的に進む可能性があります。
◆研究では、流体と化学反応の相互作用によって、微細なポリマーシートが自己組織化し、粘着性のある結合点を介して自動的に3D構造を形成することが示されました。これにより、複雑な機械装置を必要とせずに、効率的で経済的な3Dマイクロ構造の製造が実現できると期待されます。また、この方法は生物にとって友好的な水を使用するため、医療応用にも適しています。
◆今後は実験者にガイドラインを提供し、自己組織化による製造プロセスの自動化を進めることが重要であるとされています。

<関連情報>

閉じ込められた流体を工学的に制御し、立体構造を自律的に組み立てる Engineering confined fluids to autonomously assemble hierarchical 3D structures

Oleg E Shklyaev, Abhrajit Laskar, Anna C Balazs
PNAS Nexus  Published:24 July 2023
DOI:https://doi.org/10.1093/pnasnexus/pgad232

Fluid flows deliver square 2D panels together and assemble them into 3D cube. A) Schematic of the fluidic chamber where disconnected square panels are dragged by the flow (blue circular lines) to the center. B) Each panel contains 16 subunits (green spheres) connected together by elastic bonds (black lines). Subunits have functionalities: green—form elastic network; orange—enable bonding between the panels; black—catalyze chemical reactions that drive fluid flows. C) After binding to the central (black) square, the side panels are dragged upward by the flow. D) Side sticky bonds lock the cubic structure.

Abstract

The inherent coupling of chemical and mechanical behavior in fluid-filled microchambers enables the fluid to autonomously perform work, which in turn can direct the self-organization of objects immersed in the solution. Using theory and simulations, we show that the combination of diffusioosmotic and buoyancy mechanisms produce independently controlled, respective fluid flows: one generated by confining surfaces and the other in the bulk of the solution. With both flows present, the fluid can autonomously join 2D, disconnected pieces to a chemically active, “sticky” base and then fold the resulting layer into regular 3D shapes (e.g. pyramids, tetrahedrons, and cubes). Here, the fluid itself performs the work of construction and thus, this process does not require extensive external machinery. If several sticky bases are localized on the bottom surface, the process can be parallelized, with the fluid simultaneously forming multiple structures of the same or different geometries. Hence, this approach can facilitate the relatively low-cost, mass production of 3D micron to millimeter-sized structures. Formed in an aqueous solution, the assembled structures could be compatible with biological environments, and thus, potentially useful in medical and biochemical applications.

ad

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました