2023-05-12 ハーバード大学
◆この進歩は、Nature Materialsに報告されました。これにより、量子ビットの出力のタイミングと強度をより制御することができます。
◆これらの欠陥と彼らが放射する光の波長は、ダイヤモンドや他の結晶に美しい色を与えることがあります。しかし、フォトニック材料のナノスケールキャビティ内では、これらの欠陥は情報の光エミッターのように振る舞うことができます。
<関連情報>
- https://seas.harvard.edu/news/2023/05/forming-and-sensing-optical-emitters-real-time
- https://www.nature.com/articles/s41563-023-01544-x
ナノフォトニックキャビティにおけるスピン欠陥のレーザー書き込み Laser writing of spin defects in nanophotonic cavities
Aaron M. Day,Jonathan R. Dietz,Madison Sutula,Matthew Yeh & Evelyn L. Hu
Nature Materials Published:27 April 2023
DOI:https://doi.org/10.1038/s41563-023-01544-x
Abstract
High-yield engineering and characterization of cavity–emitter coupling is an outstanding challenge in developing scalable quantum network nodes. Ex situ defect formation systems prevent real-time analysis, and previous in situ methods are limited to bulk substrates or require further processing to improve the emitter properties1,2,3,4,5,6. Here we demonstrate the direct laser writing of cavity-integrated spin defects using a nanosecond pulsed above-bandgap laser. Photonic crystal cavities in 4H-silicon carbide serve as a nanoscope monitoring silicon-monovacancy defect formation within the approximately 200 nm3 cavity-mode volume. We observe spin resonance, cavity-integrated photoluminescence and excited-state lifetimes consistent with conventional defect formation methods, without the need for post-irradiation thermal annealing. We further find an exponential reduction in excited-state lifetime at fluences approaching the cavity amorphization threshold and show the single-shot annealing of intrinsic background defects at silicon-monovacancy formation sites. This real-time in situ method of localized defect formation, paired with cavity-integrated defect spins, is necessary towards engineering cavity–emitter coupling for quantum networking.