衛星データを用いて成層圏でのメタン減少量を定量化(UW researchers use satellite data to quantify methane loss in the stratosphere)

2026-02-09 ワシントン大学(UW)

米国のワシントン大学の研究チームは、衛星観測データを用いて成層圏におけるメタン減少量を定量化することに成功した。メタンは強力な温室効果ガスだが、これまで成層圏でどの程度分解・消失しているかは不確実性が大きかった。本研究では、複数の衛星データを統合解析し、メタンが成層圏で化学反応によって失われる速度と空間分布を詳細に評価した。その結果、成層圏でのメタン損失が地球全体のメタン循環に無視できない影響を与えていることが示された。本成果は、気候モデルの精度向上や、将来の温暖化予測の信頼性強化に重要な科学的基盤を提供する。

衛星データを用いて成層圏でのメタン減少量を定量化(UW researchers use satellite data to quantify methane loss in the stratosphere)
This graph shows the globally averaged, monthly mean atmospheric methane abundance from 1983, when monitoring began, to present. Photo: NOAA

<関連情報>

衛星観測による成層圏メタンの世界的な減少 Global stratospheric methane loss from satellite observations

Qiang Fu and Cong Dong
Proceedings of the National Academy of Sciences  Published:February 9, 2026
DOI:https://doi.org/10.1073/pnas.2529774123

Significance

Methane (CH4) is the second most important human-driven greenhouse gas after carbon dioxide, but its variability and long-term increase are not well understood, partly because of large uncertainties in how it is removed from the atmosphere. One important removal pathway is CH4 oxidation in the stratosphere, which also produces water vapor and reactive chemicals that affect climate and ozone. Until now, estimates of the stratospheric CH4 loss have relied only on models. Using satellite observations, we provide an observationally based estimate, showing that models systematically underestimate this loss. Incorporating our result into the global methane budget greatly reduces existing imbalances, helping reconcile top-down and bottom-up estimates and improving confidence in methane-climate assessments.

Abstract

Stratospheric CH4 oxidation represents both an important sink in the global CH4 budget and a major source of stratospheric water vapor and hydrogen radicals, exerting strong influences on global climate and ozone chemistry. Yet, the magnitude of stratospheric CH4 chemical loss remains highly uncertain, with previous estimates largely relying on chemistry-climate models (CCMs). Here, we present an observationally based estimate of stratospheric CH4 loss (LSTR), derived from the CH4 diabatic flux across the isentropic surface fitted to the tropical tropopause, using satellite measurements of CH4 concentration, temperature, and radiative heating rates for 2007–2010. We obtain an LSTR of 49.8 ± 7.8 Tg/y, compared with 38.1 Tg/y estimated from reanalysis, and 25.7 Tg/y (range: 19.6 to 35.9 Tg/y) derived from CCMs, indicating that both reanalysis and CCMs systematically underestimate stratospheric CH4 loss. We show that discrepancies in global CH4 diabatic fluxes from the reanalysis and CCMs, when compared with observations, are mainly driven by biases in CH4 concentrations and further enhanced by errors in temperature and radiative heating. Substituting our observational estimate for the model-based stratospheric loss in the bottom-up global CH4 budget reduces the reported imbalance for the 2000s from 23 to 3 Tg/y, bringing it into close agreement with the 5 Tg/y (range: −4 to 13 Tg/y) imbalance inferred from top-down estimates. These findings highlight the critical role of observational constraints on LSTR in reconciling the global CH4 budget. They also carry important implications for understanding stratospheric water vapor and ozone chemistry.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました